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Abstract – In this letter we attempt to trace back the origin of quantum uncertainty. We show
that the Schrödinger equation can be mapped into the inviscid Favre-Reynolds turbulence equa-
tions of classical compressible fluids, albeit in zero temperature. Under this mapping the prob-
ability density function becomes the Reynolds time mean density of the fluid, the real and the
imaginary parts of the momentum become the mean and turbulent root-mean-square velocities,
respectively, where the latter obeys the first Fick law of diffusion and saturates the lower bound
of the uncertainty principle. The mean pressure is proportional to the divergence of the turbulent
mass flux and is the source for stochasticity. The roles of the pressure gradient force and the
Reynolds stress tensor convergence, under this mapping, are illustrated in two well-known sys-
tems, namely, the 1s orbital hydrogen atom and the 1D dynamic Gaussian wavepacket. Finally,
we analyze within an independent part of the letter, a conjecture according to which this pressure
results from vacuum fluctuations at the zero-point energy, mediated by random collisions of the
particle with virtual photons. This suggests that the typical turbulent eddy is of the size of the
Compton wavelength corresponding to a Reynolds averaging time scale which is twice the Zitter-
bewegung period. Moreover, according to this interpretation the quantized characteristics of the
particle result from interactions with virtual photons.

Copyright c© EPLA, 2018

Introduction. – Quantum mechanics appears to be
an inherently uncertain theory, significantly different from
classical mechanics. However, the probabilistic nature
of quantum mechanics may suggest that it does share
similarities with mean theories such as thermodynamics
and hydrodynamics. The various analogies between quan-
tum mechanics and hydrodynamics, first introduced by
Madelung [1], and later further developed, e.g., by [2–4],
is still under active research [5–7]. This hydrodynamic
viewpoint is tightly related to Bohmian mechanics [8–10]
and stochastic quantum mechanics [11–23].

The term “quantum turbulence” is usually related to
the motion of quantum fluids such as superfluid helium
and atomic Bose-Einstein condensates, in the presence of
quantized vortices, and a two-fluid dynamics at finite tem-
perature [24]. We show below that the non-relativistic
Schrödinger equation (SE) of a single particle in a vac-
uum can be mapped by itself into the turbulent equations
of a classical fluid in the limit of zero temperature and

zero viscosity. We then illustrate the consequences of this
mapping using two well-known systems. We conclude with
a brief interpretation of these results and a discussion.

Mapping of the Schrödinger equation to turbu-
lence equations. – The SE, in the presence of an exter-
nal scalar potential U ,

ih̄
∂Ψ
∂t

=
(

P 2

2m
+ U

)
Ψ =

(
− h̄2

2m

∂2

∂x2
i

+ U

)
Ψ, (1)

where
Ψ(x, t) =

√
ρ(x, t)eiS(x,t)/h̄, (2)

can be written in its Madelung [1] form (here and below
summation over repeated indices is implied):

∂ρ
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= −∂ (ρvj)

∂xj
, (3a)
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where
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(
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and
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∂2√ρ

∂x2
j

(5)

is the Bohm potential [8,25]. Using now the following
identity for a scalar field α:

1
α

∂2α

∂x2
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=
∂2ln α
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, (6)

and defining Fick’s diffusion velocity with the Nelson dif-
fusivity coefficient

(
h̄

2m

)
[13]:
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eq. (3b) can be written after some vector calculus as(
∂

∂t
+ vj

∂

∂xj

)
vi = − 1

mρ
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where
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Consider now the continuity and momentum equations
for classical Eulerian fluids:

∂ρm

∂t
= − ∂

∂xj
(ρmuj) , (10a)(

∂

∂t
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∂
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)
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∂xi
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m

∂U

∂xi
, (10b)

where u is the hydrodynamic velocity, π is the pressure
and ρm denotes the fluid mass density (to distinguish it
from the quantum probability density function ρ). If the
fluid is turbulent we can decompose the mean dynam-
ics from the turbulent one by imposing on (10) both the
Reynolds time averaging on a typical turbulent eddy time
scale τ :

f ≡ 1
τ

∫ t+τ/2

t−τ/2

fdt, (11a)

and the Favre density weighted time averaging (suitable
for compressible flow [26]):

f̃ ≡ ρmf

ρm

(11b)

(so that f = f + f ′ = f̃ + f ′′, where f ′ = f̃ ′′ = 0).
This provides the compressible turbulent equations (with-
out closure) for the high-Reynolds-number regime:

∂ρm

∂t
= − ∂

∂xj
(ρmũj), (12a)
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− 1

m

∂U

∂xi
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where the second term in the RHS is the turbulence
Reynolds stress tensor convergence. Toward a closure (i.e.,
an expression of the turbulent fluxes in terms of the mean
flow fields) we define the turbulent root-mean-square ve-
locity (RMS) û to satisfy

ûiûj ≡ ũ′′
i u′′

j , (13)

which allows to write (10b) as(
∂

∂t
+ ũj

∂

∂xj

)
ũi = − 1

ρm

∂
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(πδij + ρmûiûj) −

1
m
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∂xi
.

(14)
Comparing (3a) with (12a) and (8) with (14) implies that
for the Madelung fluid

ρm = mρ; ũ = v; û = w; π = p. (15)

Examples. – We consider two well-known simple ex-
amples in order to obtain some better understanding and
further insights regarding the derivations above (for other
examples see [27]).

The first is the 1s orbital wave function of the hydro-
gen atom:

Ψ =
e−(r/a0)√

πa3
0

e−iEt/h̄ (16)

(where a0 is the Bohr radius, E = −h̄2/2mea
2
0 is the

eigenstate energy and me is the electron mass). Since S is
not a function of space ũ = 0, the electron kinetic energy
is only the TKE one. The magnitude of the turbulent
velocity possesses only a radial component ûr = h̄/mea0,
thus the electron TKE, K̂ = −E. The electric potential
U = −h̄2/mea0r, so that Q = K̂ + p/ρ = E − U . As
can be verified from (9) indeed mπ/ρm = 2E −U , so that
〈Q〉 = 〈K̂〉 and 〈U〉 = 〈2E〉. It is interesting to understand
the force balance in (12b), for this mean equilibrium state,
among the pressure gradient force (PGF), the Reynolds
stress convergence term (written in spherical coordinates)
and the Coulomb force:

0 = − 1
ρm

∂π

∂r
−

(
2
r

+
∂ ln ρm

∂r

)
û2

r −
1

me

∂U

∂r
. (17)

The mean pressure

π =
h̄2

m2
ea0

(
1
r
− 1

a0

)
ρm, (18)

is positive (negative) inside (outside) the Bohr radius.
Nevertheless the PGF is not always pointed outward to
balance the inward Coulomb force. In fact the Reynolds
stress convergence term becomes

2
(

h̄

mea0

)2 (
1
a0

− 1
r

)
=

1
ρm

∂π

∂r
+

1
me

∂U

∂r
, (19)
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which is negative (positive) inside (outside) the Bohr ra-
dius. Thus, inside (outside) the Bohr radius the PGF is
too strong (weak) to balance the Coulomb force. This
imbalance, everywhere but the Bohr radius itself, is com-
pensated by the Reynolds stress convergence.

Hence, in terms of this formulation the electron exhibits
a random radial motion which draws a picture equiva-
lent to the spherical plot of the probability density func-
tion. This stands in contrast both with the Bohr model,
where the electron rotates around the nucleus on a plane,
and with the Bohmian mechanics interpreting the elec-
tron at the s orbitals to stay fixed at the Bohr radius (as
Ẋ ≡ ũ = 0).

The second example is the 1D dynamic Gaussian solu-
tion to (1) for a free particle:

ρ(x, t) =
e−x2/2σ2

√
2πσ

; S =
mx2

2
∂ ln σ

∂t
;

σ2 = σ2
0 +

(
h̄t

2mσ0

)2

.

(20)

The mean velocity

ũ =
xt(

mσ2
0

h̄

)
+ t2

(21)

diverges from the Gaussian center, although the Gaussian
is only spreading in time without changing its mean posi-
tion. In fact this divergence yields the decrease in density
according to the continuity equation (3a). The turbulent
velocity,

û =
(

2mσ2
0

h̄t

)
ũ, (22)

indicates that the turbulence intensity |ũ/û| decreases uni-
formly in time as 1/t. The material acceleration of the
mean velocity,

Dũ

Dt
=

(
∂

∂t
+ ũ

∂

∂x

)
ũ = − 1

m

∂Q

∂x
=

(
h̄

2m

)2
x

σ4
, (23)

diverges linearly as well from the mean position. Bearing
an interesting similarity to the previous example, the mean
pressure,

π̄ =
(

h̄

2mσ

)2 [
1 −

(x

σ

)]
ρ̄m, (24)

is positive inside when |x| < σ and negative outside of
it. The mean momentum equation (12b) for this case is
therefore

Dũ

Dt
= − 1

ρm

∂π

∂x
− 1

ρm

∂

∂x

(
ρmû2

)
, (25)

where

− 1
ρm

∂π
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=

Dũ

Dt

[
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)2
]

(26)

and

− 1
ρm

∂

∂x

(
ρmû2

)
=

Dũ

Dt

[(x

σ

)2

− 2
]

. (27)

Similarly to the previous example, the Reynolds stress
convergence hinders the mean PGF near the center and
helps it at the flanks of the density distribution.

Interpretation. The mapping above suggests that the
SE may be interpreted as a description of the mean dy-
namics of a turbulent inviscid compressible flow. Un-
der this interpretation the quantum probability density
function is the time mean density (per unit mass) of
the fluid, the real part of the momentum per unit mass
(proportional to the wave function phase gradient) is
the Favre-Reynolds mean velocity, where the imaginary
part provides the turbulent RMS velocity. The mean
pressure is proportional to the divergence of the tur-
bulent mass flux, so that the turbulent flux diverges
(converges) from (into) positive (negative) mean pressure
anomalies.

Furthermore, the conserved energy resulting from the
SE can be written as [28]

〈E〉 =
∫

Ψ∗
(
− h̄2

2m

∂2

∂x2
i

+ U

)
Ψd3x =∫

ρ
(
K̃ + Q + U

)
d3x,

(28)

where

K̃ ≡ mũ2
i

2
, (29)

is commonly considered as the mean kinetic energy
(MKE). When similarly defining the turbulent kinetic en-
ergy (TKE) as

K̂ ≡ mû2
i

2
, (30)

it can be shown, after some algebra, that

Q =
(

K̂ + m
π

ρm

)
. (31)

Thus, the Bohm potential can be interpreted as the en-
thalpy of a turbulent fluid with zero temperature. Since
the domain integrated work performed by the pressure
fluctuation p vanishes 〈Q〉 = 〈K̂〉, the energy expectation
value of the quantum particle becomes

〈E〉 =
∫

ρ
(
K̃ + K̂ + U

)
d3x, (32)

which is the total energy of a turbulent fluid in zero
temperature.

The partition between the turbulent and the mean
parts of the flow suggests that the SE can provide
information only on the mean dynamics. The turbu-
lent RMS velocity û correlation with the position sat-
urates to the lower bound of the uncertainty principle
as 〈mûixi〉 = 3h̄/2. The pressure in the fluid-like de-
scription is the source for stochasticity. Taking π =
0 in (10) we obtain the Newtonian dynamics solution:
mẌj = − ∂U

∂xj
, ρm = mδ(x − X(t)), where X(t) is the
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particle location and u = Ẋ. Thus, a plausible inter-
pretation of this analysis is that the SE represents the
mean motion of a particle which results from a stochas-
tic forcing exerted by fluctuations whose mean pressure is
determined by (15).

We shall now examine an hypothesis according to which
the source of this pressure is the vacuum fluctuations of
the zero-point energy. A small and light enough particle
in a vacuum might be expected to be affected by random
collisions with virtual particles [21]. In this respect, it is
interesting to determine the speed of sound in the tur-
bulent fluid. The Fourier transform of the pressure from
eq. (15) leads to

πk = ρm,k

(
h̄k

2m

)2

, (33)

which defines the speed of sound as

ck ≡
(

∂πk

∂ρm,k

)1/2

S
=

h̄k

2m
, (34)

where the derivative is taken at constant entropy S.
Hence, the speed of sounds depends on the wavelength, in
contrast to classical fluids. The corresponding momentum
is equal to the momentum of the incident virtual particles
due to the conservation law. Since they should be rela-
tivistic virtual particles moving with the speed of light c,
their energy is equal to E = ch̄k/2 = h̄ω/2. Therefore, the
stochastic pressure π could result from the zero-point en-
ergy of the virtual particles in vacuum. We note that ck is
the phase velocity, while the group velocity is 2ck = h̄k/m,
i.e., the Fourier image of the quantum operator divided by
the mass P/m.

Next we speculate what should be the typical turbu-
lent time averaging τ . Since the turbulent RMS veloc-
ity (15) is a diffusive velocity with a diffusion coefficient
of D = h̄/2m we may assume that τ = l2/2D = ml2/h̄,
where l is the typical size of the turbulent eddy. Since
the particle chaotic motion results from random interac-
tions with virtual photons, we assume further that the
eddy turnover time scale is τ = l/c, yielding a typical
eddy size of the reduced Compton wavelength l = h̄/mc,
where τ = h̄/mc2 corresponds to the angular frequency
Ω = mc2/h̄, which is half of the Zitterbewegung frequency
(see also [22]).

Discussion. – In this letter we mapped the non-
relativistic Schrödinger equation of a single particle in
a vacuum into the turbulent equations of a compress-
ible inviscid fluid at zero temperature. The aim was
not just an intellectual exercise but an attempt to un-
derstand the reason for the probabilistic nature of the SE
as well as the source for quantization. If we accept the
paradigm of a fluctuating vacuum at the zero-point tem-
perature, then we may assume that the virtual photons
occupying the vacuum randomly hit the particle and im-
part their energy and momentum on the particle (the dis-
cussed particles are assumed to have no internal degrees

of freedom hence all collisions were assumed to be elas-
tic). The random nature of these collisions is the source
for uncertainty and since the photons’ energy and momen-
tum are quantized this reflects on the particle’s stochas-
tic behavior. The reason for the fluid-like representation
of the SE in the Madelung equation is that the overall
effect of the collisions of the photons on the particle ex-
ert pressure, whereas the reason for the turbulence-like
form equations is the existence of a short time scale, pro-
portional to the inverse of the Zitterbewegung frequency,
that separates between the random motion of the par-
ticle due to interaction with the photons and the par-
ticle mean motion. According to this interpretation, in
multipartite scenarios (described within multidimensional
phase space), quantum nonlocality would emerge simi-
larly to the de Broglie-Bohm interpretation due to the
quantum potential. However, our approach may enable to
track nonlocality down to spatial correlations within the
vacuum.
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