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Abstract The counter-propagating Rossby wave perspective to shear flow instability is extended here to the
weakly nonlinear phase. The nonlinear action at a distance interaction mechanism between a pair of waves
is identified and separated from the linear one. In the former, the streamwise velocity converges the far-field
vorticity anomaly of the opposedwave,whereas in the latter, the cross-streamvelocity advects the far-fieldmean
vorticity. A truncated analytical model of two vorticity interfaces shows that higher harmonics generated by
the nonlinear interaction act as a forcing on the nonnormal linear dynamics. Furthermore, an intrinsic positive
feedback toward small-scale enstrophy results from the fact that higher harmonic pair of waves are generated
in anti-phase configuration which is favored for nonnormal growth. Near marginal stability, the waves preserve
their structure and numerical simulations of the weakly nonlinear interaction show wave saturation into finite
amplitudes, in good agreement both with the fixed point solution of the truncated model, as well as with its
corresponding weakly nonlinear Ginzburg–Landau amplitude equation.

Keywords Counter-propagating Rossby waves · Linear nonnormal and nonlinear interactions ·
Geophysical fluid dynamics

1 Introduction

The counter-propagating Rossby wave (CRW) is a concept that successfully rationalizes many aspects of
linearized dynamics of shear flows. It was originally presented by Bretherton [1] in the context of atmospheric
baroclinic instability, and after reviewed by Hoskins et al. [2], it received considerable attention as a conceptual
tool to explain both baroclinic and barotropic instabilities (e.g., [3–11]). The essence of the Rossby wave
counter-propagation mechanism and the modal and optimal nonmodal (nonnormal) CRW interaction are
explained in [12] (hereafter HM05) and is summarized in Figs. 1 and 2 here.
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Fig. 1 Schematic illustration of the Rossbywave counter propagationmechanism over a cross-stream (y-direction)mean vorticity
gradient (MVG) qy . The undulating solid line illustrates the CRW displacement. Positive and negative vorticity anomalies are
indicated by ±q , the circulation associated with them by circled arrows and the maximum cross-stream velocities (located a
quarter wavelength out of phase of ±q) by solid arrows. The cross-stream velocity associated with the perturbation advects the
mean vorticity and as a result the wave propagates to the left (dashed undulation, the direction of propagation is indicated by a
horizontal arrow c) relative to the mean flow (bold arrow U ). For counter-propagation, the signs of the mean flow and the MVG
are the same (both are positive in this example)

Fig. 2 Schematic description of the linear interactions between CRWs. a �ε = π/2, the crosswise velocities (dashed arrows)
help to increase the vorticity anomaly of each CRW by advecting the mean flow, thereupon mutual transient growth is obtained.
b �ε = 0, the cross-stream velocities interfere constructively so each CRW “helps” the other to counter-propagate faster, c
�ε = π , the waves hinder each others’ counter propagation, d Nonmodal growth in term of CRWs; εnm corresponds to the
relative CRW phase difference in the growing normal mode configuration, while εbio = π −εnm to its biorthogonal configuration.
The maximal instantaneous growth occurs at ε = π/2, while for t → ∞, the initial and final optimal phases are symmetric with
respect to π/2 (so ε(0) = εbio). Hence, when εnm is in the hindering/helping regime, the phase difference increases/decreases
during optimal evolution (solid/dashed arrows)

The purpose of this study is to extend the understanding of CRW interaction to the nonlinear (NL) regime.
NL Rossby wave interaction is an important mechanism in the evolution of central scenarios in atmospheric,
oceanic and astrophysical fluid dynamics e.g., [13–17], yet, to the best of our knowledge, no explicit mech-
anistic CRW analysis exists to describe NL wave–wave interactions. In order to study the basic nature of the
phenomenon, we choose a simple setup of a shear layer (Fig. 3 also known as the Rayleigh shear model [18]),
in which CRW waves exist at the two edges of the shear layer. Since in the fully NL regime Rossby waves
break into vortices, we consider here only interaction in the presence of strong enough damping that prevents
vortex formation. Such damping may be related, for instance, to the Ekman boundary layer spin-down effect
on the Rossby waves in the free atmosphere [19,20]. More generally, this study may be relevant to systems
that are close to marginal stability, i.e., exhibit slight departures from marginality and are thus only weakly
unstable (for example, filamentry vortex strip in the presence of an adverse shear [21]). The analysis therefore
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Fig. 3 The Rayleigh model, a piecewise linear velocity profile of a single shear layer with negative vorticity embedded by
two infinite layers of zero vorticity. The arrows indicate mean streamwise velocities. At y = ±b, the mean flow vorticity is
discontinuous, yielding a positive/negative mean vorticity gradient at y = ±b (respectively)

focuses on the weakly NL phase; however, it is different from the triad interaction discussed in [22,23] in the
absence of background shear.

The presence of shear makes the linearized dynamics to be nonnormal in the sense that the linearized
eigenfunctions are generally nonorthogonal to each other and hence transient growth, obtained by singular
value decomposition analysis (rather than by standard eigen value decomposition), may exceed the growth
obtained by the most unstable mode. Hence these singular vectors are the first to interact nonlinearly. As
mentioned above, the nonnormal CRW dynamics are described as well in HM05.

It is important to note that the analysis here is solely restricted to the CRW edge wave interaction. Thus
interaction with continuous singular modes and the generation of critical layers [24], or weakly nonlinear
description of vortex roll-up in shear layers [25], are beyond the scope of this paper.

The article is organized as follows. In Sect. 2, we formulate the NL CRW interaction into a truncated
simplified model, and in Sect. 3, we describe the CRWmechanistic nonnormal–nonlinear feedback. In Sect. 4,
we compare the truncated model to the results derived from the weakly NL Ginzburg–Landau amplitude
equation and to direct numerical simulations. The results are concluded and discussed in Sect. 5.

2 Formulation

2.1 General formulation of plane parallel shear flows in terms of CRWs

We consider a 2D (streamwise, cross-stream) (x, y) incompressible barotropic flow with an equilibrated
steady zonal mean shear flow, denoted by bars, and perturbations, denoted by primes: u(x, y, t) = [

u(y) +
u′(x, y, t), v′(x, y, t)

]
, so that the vorticity vector points in the z direction with magnitude q(x, y, t) =

ẑ · ∇ × u = q(y) + q ′(x, y, t) = − ∂u
∂y + ( ∂v′

∂x − ∂u′
∂y

)
. For simplicity, we represent damping by Rayleigh

friction, r = τ−1
r , where τr is the relaxation time scale toward equilibrium. Given these model assumptions,

the vorticity equation is:

Dq

Dt
=
(

∂

∂t
+ u · ∇

)
q = −r(q − q). (1)

This may be also written explicitly in terms of the mean flow and the perturbation, as:
(

∂

∂t
+ u

∂

∂x
+ r

)
q ′ + v′ ∂q

∂y
= −∇ · (u′q ′), (2)

where the LHS and RHS represent the linear and the nonlinear components, respectively. In order to express
the perturbation velocity field in terms of the perturbation vorticity, we apply first a streamwise Fourier
decomposition: q ′(x, y, t) = ∫∞

−∞ qk(y, t)eikxdk, where qk = 1
2Qkeiεk = q∗−k (asterisk denotes the complex

conjugate), so that q ′ = ∫∞
0 Qk(y, t) cos[kx + εk(y, t)]dk = ∫∞

0 q̃kdk. Qk(y, t) and εk(y, t), can be therefore
regarded as the respected amplitude and phase of the vorticity kernel q̃k(x, y, t). The perturbation velocity
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field associated with such a vorticity kernel is obtained by the Green function of the stream-function ψ , where

u′ = ẑ × ∇ψ ′ =
[
− ∂ψ ′

∂y ,
∂ψ ′
∂x

]
, q ′ = ∂v′

∂x − ∂u′
∂y = ∇2ψ ′, and therefore q̃k(y, t) = −k2ψ̃k + ∂2ψ̃k

∂y2
. Hence, for

open flows,

ψ ′(x, y, t) =
∫ ∞

0

[∫ ∞

−∞
Qk(y0, t) cos[kx + εk(y0, t)]Gk(y, y0)dy0

]
dk =

∫ ∞

0
ψ̃kdk, (3)

whereGk(y, y0) = −e−k|y−y0|/2k is theGreen function satisfying∇2Gk(y, y0) = δ(y−y0), togetherwith the
boundary conditions of vanishing velocities at (−∞, ∞) (For closed, or semi-closed, boundaries, the suitable
Green functions appear in the Appendix of HM05). The velocity perturbations are therefore

u′(x, y, t) =
∫ ∞

0

[∫ ∞

−∞
−Qk(y0) cos[kx + εk(y0)]∂Gk

∂y
dy0

]
dk =

∫ ∞

0
ũkdk, (4a)

v′(x, y, t) =
∫ ∞

0

[∫ ∞

−∞
kQk(y0) sin[kx + εk(y0)]Gkdy0

]
dk =

∫ ∞

0
ṽkdk, (4b)

representing the appropriate vorticity inversion. Each localized vorticity kernel q̃k(y0) is associated with a
far-field velocity ũk(y, y0), where ũk is in (out of) phase below (above) q̃k , and ṽk leads q̃k by a quarter
wavelength (as sketched schematically by the circled arrows in Fig. 1). Equation (2), in spectral form, now
appears as:

∫ ∞

k=0

∂q̃k
∂t

dk = −
∫ ∞

k=0

[(
u

∂

∂x
+ r

)
q̃k + ṽk

∂q

∂y

]
dk

−
∫ ∞

k1=0

∫ ∞

k2=0
∇ · (ũk1 q̃k2)δ

(
k1 ± k2 = k

)
dk1dk2, (5)

where δ(k1 ± k2 = k) represents streamwise triad interactions. Hence, for a specific spectral component (5)
can be written symbolically as:

∂q̃k
∂t

= NNk{q̃k} + NL(k1±k2=k){q̃k1 q̃k2},�⇒

q̃k(t) = eNNk t q̃k(0) +
∫ t

0
eNNk(t−τ)NL(k1±k2=k){q̃k1 q̃k2}(τ )dτ.

(6)

The linearized operator is generally nonnormal (NN) due to the mean shear differential advection, and the
nonlinear (NL) contribution results from the triad interaction. Equation (6) suggests that the latter can be
interpreted as a continuous temporal forcing on the nonnormal linear dynamics. The triad generation of
NL(k1±k2=k) at time τ evolves linearly in the time increment between τ and the present time t , in a nonnormal
fashion. Obviously, the triad interactions (k − k2 = k1) and (k − k1 = k2) affect back on (k1, k2), hence
a nonlinear–nonnormal feedback is an intrinsic feature in the dynamics. This feedback was summarized by
Baggett and Trefethen [26]: Initially, small perturbations grow linearly where some structures experience a
significant transient growth due to nonnormality. When they grow further, nonlinearity becomes important and
new wavenumbers with new structures are generated by triad interaction (“nonlinear mixing”). Some of these
new structures experience nonnormal transient growth, inducing further nonlinear feedback, and so forth.

2.2 CRWs in the Rayleigh model

We consider the simple Rayleigh model basic state sketched schematically in Fig. 3 that supports the existence
of CRW pairs on the two sides of the shear layer:

ū(y) =

⎧
⎪⎨

⎪⎩

	b y ≥ b
	y −b ≤ y ≤ b;
−	b y ≤ −b,

q̄(y) =

⎧
⎪⎨

⎪⎩

0 y > b
−	 −b < y < b;
0 y < −b

∂q̄

∂y
= 	[δ(y − b) − δ(y + b)].

(7)
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Since ∂ q̄
∂y is concentrated in two δ-functions at y = ±b, Eq. (2) suggests that the vorticity perturbation should

be as well concentrated there as δ-functions; q ′(x, y, t) = q̂b(x, t)δ(y − b) + q̂−b(x, t)δ(y + b). Hence,
by integrating (2) in y between (±b − ε, ±b + ε), where ε → 0, the nonlinear cross-stream vorticity flux
convergence, − ∂(v′q ′)

∂y , vanishes1 and (2) reduces at y = ±b to

(
∂

∂t
± 	b

∂

∂x
+ r

)
q̂±b ± v′	 = −∂(u′q̂±b)

∂x
. (8)

As far as remote CRW interactions are concerned, the cross-stream perturbation velocity affects the linear
dynamics by advecting the mean flow at a distance [i.e., the last term in the LHS of Eq. (8)], while the
streamwise velocity perturbation affects the nonlinear dynamics by converging the perturbation vorticity of
the opposing CRW [the term in the RHS of Eq. (8)]. Writing then

q̃k = q̂bk (x, t)δ(y − b) + q̂−b
k (x, t)δ(y + b)

= Q̂b
k(t) cos

[
kx + εbk (t)

]
δ(y − b) + Q̂−b

k (t) cos
[
kx + ε−b

k (t)
]
δ(y + b), (9)

and substitute in (3), the stream-function and velocities take the form:

ψ̃k = − 1

2k

[
q̂bk e

−k|y−b| + q̂−b
k e−k|y+b|] , (10a)

and the velocity fields at the interfaces are

ũ±b
k = ∓1

2
q̂∓b
k e−2kb, (10b)

and

ṽ±b
k = − 1

2k

[
∂q̂±b

∂x
+ ∂q̂∓b

∂x
e−2kb

]
. (10c)

2.3 Truncated model

We assume an initial small perturbation of wavenumber k which first grows linearly [according to the LHS of
(8)] and when it becomes large enough generates nonlinearly, [according to the RHS of (8)], perturbation in
wavenumber 2k (k + k = 2k). The latter interacts back with wavenumber k. The mutual k ⇐⇒ 2k equations
describing this process are (see “Appendix A” for a detailed derivation):

Q̇k =
{
[σk sin (�εk) − r ] − k

2
σk Q2k sin

(
�ε2k

2

)}
Qk, (11a)

�̇εk = 2σk [cos (�εk) − fk] + kσk Q2k cos

(
�ε2k

2

)
, (11b)

Q̇2k =
{

[σ2k sin (�ε2k) − r ] + kσk
Q2

k

Q2k
sin

(
�ε2k

2

)}

Q2k, (12a)

�̇ε2k = 2σ2k [cos (�ε2k) − f2k] + 2kσk
Q2

k

Q2k
cos

(
�ε2k

2

)
. (12b)

For the NL interaction, the scale of the vorticity matters. Recall that Q is the vorticity density amplitude (with
units of speed), hence the scaling of (11) and (12) indicates that Q is normalized as well by 2	b. In the linear

1 This is supported by the numerical simulations presented in Section 4, where the mean vorticity gradients are concentrated

in two narrow, but finite bands. There the terms
∫ ±b+ε

±b−ε
∂(v′q ′)

∂y dy, are indeed smaller by at least two orders of magnitude than
∫ ±b+ε

±b−ε
∂(u′q ′)

∂x dy.
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approximation, Q±b represent the CRW vorticity anomalies at the edges, associated with the cross-stream
displacement η′±b = −[q ′/∂q

∂y ]±b = ∓q±b/	. Since an implicit assumption in the CRW description is that
these displacements are localized, we set the damping to allow a maximum value of Q = 0.5, corresponding
to a CRW displacement amplitude of half of the shear layer’s width. Within this constraint, system (11, 12)
admits stable fixed points (“Appendix B”). Although the system is not closed in the sense that other harmonics
may interact with (k, 2k), it will be shown that if k is taken as the wavenumber of the most unstable mode,
these fixed points provide a good approximation for the saturated state when compared to straightforward
wave–wave simulations and to the derivation of the weakly nonlinear Landau–Ginzburg amplitude equation.

3 Nonlinear–nonnormal CRW feedback

3.1 Mechanistic description

Equations (11–12) can be written equivalently in the form of (6)

q̃k = Qk

(
eiε

b
k

eiε
−b
k

)

; NNk = −i

(
kcbk − ir −σk

σk kcbk − ir

)
, (13)

in which,

NL(k+k=2k) ≡ NL2k = ikσk Q
2
ke

i
(
εbk+ε−b

k

) (
1

−1

)
, (14a)

NL(2k−k=k) ≡ NLk = i
k

2
σk QkQ2k

⎛

⎝ e
i
(
εb2k−ε−b

k

)

−e
i
(
ε−b
2k −εbk

)

⎞

⎠ , (14b)

so that

˙̃qk − NNk q̃k = NLk; ˙̃q2k − NN2k q̃2k = NL2k �⇒ (15)

q̃k(t) = eNNk t q̃k(0) +
∫ t

0
eNNk (t−τ)NLk(τ )dτ, (16a)

q̃2k(t) = eNN2k t q̃2k(0) +
∫ t

0
eNN2k (t−τ)NL2k(τ )dτ. (16b)

The NL CRW interaction at a distance, the RHS of (8), arises from the convergence of vorticity flux of
each CRW. The convergence is brought about by the induced streamwise velocity of the opposing wave
(Recall that the streamwise velocity of a CRW changes sign on the two sides of its “home base” (HM05)
and, hence, its self contribution to the streamwise velocity there is zero). Equation (14a) indicates that this
interaction, when resulting from a pair of CRWs of the same wavenumber k (NL(k+k=2k)), generates a pair of
CRWs of wavenumber 2k which are always exactly anti-phased (�ε2k = π). This anti-symmetry is simply
because positive (negative) vorticity anomalies are associated with positive (negative) streamwise velocity
below (above) them (Fig. 4a). Equation (12b) shows, in turn, that when the generated CRW 2k pair is in anti-
phase at some instant moment, �̇ε2k < 0 for every nonzero k (since f2k > −1 and cos (π

2 ) = 0). The linear
term is negative because when the CRWs are out of phase, they fully hinder each other’s counter-propagation
rate, hence they cannot resist the shear and their mutual phase difference reduces. Consequently, the NL
term in (12b) becomes negative as well (cos (

�ε2k
2 ) < 0 for �ε2k < π) Hence, the 2k CRW mode will be

shifted into the growing regime (Fig. 4b). Equation (16b) indicates that each CRW pair of wavenumber 2k,
generated in anti-phase at some instant of time t = τ , is subject to nonnormal linear evolution for those times
τ < t < tnow (i.e., for the stretch of time �t = tnow − τ). Since the linear evolution shifts the CRW phase
into the growing regime, the accumulated effect of the k + k ⇔ 2k NL interaction is therefore to increase the
enstrophy deposited into the 2k mode. The backward 2k ⇒ k NL interaction (NL(2k−k=k)) is more complex
since it involves different harmonics within the CRW pairs. It is clear, however, that the signs of the NL terms
in (11a) and (12a) are opposite. Hence while Q2

2k grows due to NL interaction, Q2
k correspondingly decays.
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Fig. 4 a A schematic illustration of the nonlinear CRWs interaction. The blue (red) arrows indicate the streamwise velocities
associated with the lower (upper) CRW of wavenumber k, where solid arrows represent velocities at the CRW “home base”
and dashed arrows on the opposed edge. The nonlinear zonal vorticity flux divergence/convergence results in a new pair of
wavenumber 2k, created exactly in anti-phase. b Evolution of the phase difference between the two CRWs of wavenumber 2k.
Since they are generated in anti-phase, which is a fully hindering configuration, the shear acts to decrease the phase difference
and consequently the CRWs enter into the growing regime

Fig. 5 a Linear damped normalized growth rate. The black arrow indicates the relevant modes of interaction; the most unstable
NM kmax = 0.8, which is weakly unstable, and its double harmonic 2kmax = 1.6 which is heavily damped. b, c show the phase
and amplitude evolution for kmax and 2kmax, respectively, in polar coordinates (Q(t),�ε(t)) (see the box of enlarged area near the
origin). The dashed arrows show the direction of the evolution, pointing toward the fixed point steady-state solution. b kmax = 0.8
is initiated from the biorthogonal phase �ε0.8

bio ≈ 0.35π with a small amplitude (≈0.01). The mode initially exhibits linear
nonmodal growth; however, instead of growing indefinitely, it saturates to Qfp

0.8 ≈ 0.27 and �ε
fp
0.8 ≈ 0.65π . c 2kmax = 1.6 is

initiated with zero amplitude. Although linearly damped, it manages to grow significantly and finally saturates at Qfp
1.6 ≈ 0.05

with �ε
fp
1.6 ≈ 0.29π

3.2 Example of k ⇐⇒ 2k feedback

One of the most straightforward examples of this k ⇐⇒ 2k feedback is when k is taken to be the most
unstable mode of the linear dynamics and the system is damped to be in the weakly nonlinear regime. The
undamped system described in HM05 picks its most unstable mode at kmax = 0.8, with a growth rate of 0.201.
By taking r = 0.197, the effective growth rate of kmax becomes kci = 0.004 (2% of the undamped growth
rate). For such damping, the mode of 2kmax = 1.6 (which is neutral in the undamped case) has a negative
exponential modal growth rate of approximately −0.2 (Fig. 5a). If we restrict our thinking to purely normal
mode dynamics, it is (at first glance) somewhat surprising that the 2kmax modemay affect the kmax one—instead
of being purely slaved to it. In order to examine the interaction between these two modes, we time advance
numerically equations (16) using third-order Adams–Bashforth method. We initiate the system with a pure
wave corresponding to the most unstable mode, with a small amplitude Qkmax = 0.01 and a phase difference
corresponding to the bi-orthogonal vector �εbio = π − �εNM = 0.36π (which is the optimal nonnormal
configuration for large target times). The evolution of the system toward steady state is presented in Fig. 5b, c
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in polar coordinates (Q(t), �ε(t)) for both kmax and 2kmax. At the initial stage of the evolution, Qkmax grows
in a nonnormal fashion while �εkmax increases and crosses π/2, as expected (small box of Fig. 5b). However,
the backward interaction 2kmax ⇐ kmax prevents the vorticity at kmax to grow indefinitely and it eventually
balances the linear growth, and consequently the vorticity converges to the fixed point value of (B1a, B2a)
(giving Qfp

kmax
≈ 0.27, �ε

fp
kmax

≈ 0.65π). The final phase is slightly larger than the normal mode one due to
the NL term in (11b) which is small but positive.

The growth of 2kmax mode due to the NL kmax ⇒ 2kmax interaction is effective enough to overcome the
strong linear damping since it keeps seeding CRW pairs π out of phase, which are then immediately shifted
by the shear into the growing regime (as in Fig. 4b). Since q̃2k(0) = 0 in this example, q̃2k(t) depends only
on the accumulated contribution of the CRWs, seeded by the NL interaction, which then evolve nonnormally
during the increment t−τ (16b). When the CRWs have equal amplitudes, the linearly interacting 2kmax CRWs
have no fixed modal phase locking. Nevertheless, here the CRW pair saturates eventually into the phase-locked
configuration predicted by (B1a), �ε

fp
2kmax

≈ 0.29π (Fig. 5c).
This can be understood in the following mechanistic way from the nonlinear kmax ⇒ 2kmax interaction.

CRWpairs generated nonlinearly at time τ close to present will have a phase difference close to π , but will also
have relatively small amplitudes; CRW pairs that are generated at some previous time τ will have more time to
grow and to be shifted toward smaller phase differences while crossing π/2; CRW pairs generated close to the
initial time may already be in the decaying regime (phase difference smaller than zero) and therefore will have
small amplitudes. Hence, the most significant contribution to the integral at the RHS of (16b) comes from the
CRWs which have large amplitudes but small positive phase differences. This is consistent with the fixed point
solutions (B1a, B2a) found for 2kmax, which describe the overall accumulated contribution in steady state.

The amplitude evolution for both kmax, 2kmax is plotted as a function of time in Fig. 7 (dashed blue and
red lines, respectively). As can be seen, the amplitudes initially grow exponentially but eventually saturate at
fixed finite amplitudes, given by the fixed point solutions (B1a, B2a) as was described above. The rest of the
results presented in Fig. 7 will be discussed in the following sections.

4 Comparison of the truncated model

4.1 Weakly NL Ginzburg–Landau model

Wewish now to compare theCRW truncatedmodelwith a standard derivation of aGinzburg–Landau amplitude
equation (GLAE). This procedure differs from the analysis above since it works with weakly unstable normal
modes and is meant to describe time-asymptotic behavior without taking explicit consideration of transient
growth dynamics. Furthermore, the NL dynamics described in GLAE is the result of both wave–mean flow
and wave–wave interaction. Since in this work we focus on the Rossby NLwave–wave interaction mechanism,
we exclude the wave–mean flow dynamics in the derivation of the GLAE. This, in a sense, compliments the
work of Pedlosky [13] who analyzed the (baroclinic) Rossby GLAE resulted solely from wave–mean flow
interaction.

Close to marginality, the modal growth rate has the approximated upside-down parabola structure (Fig. 5a),

σ = kci ≈ (rc − r) − b(k − kmax)
2, (17)

where rc is the critical damping required to prevent modal instability to exist (hence, rc is equal to the

most unstable inviscid growth rate), b ≡ − 1
2

(
∂2σ
∂k2

)

k=kmax
> 0 (and

(
∂σ
∂k

)
k=kmax

= 0). Since the departure

from marginality is small, we can define ε as a small parameter so that (k − kmax) ≡ εδk, and accordingly
(rc − r) ≡ ε2δr . The derivation of the GLAE for our case is detailed in (“Appendix C”). Eventually, we arrive
at an amplitude equation of the form:

∂A

∂T
= δr A − β2kA|A|2, (18)

where A is the amplitude of the kmax wave (themodal linear dynamics is recoveredby ∂A
∂T = δr A).T ≡ ε2t is the

slow time scale and β2k is the nonlinear parameter representing the NL attenuation due to the kmax ⇐⇒ 2kmax
interaction. For the damping value used in Fig. 5, we obtain β2k = 0.264.

In Fig. (7), we plot the time development of the vorticity amplitude for (kmax, 2kmax) resulting from (18)
(blue and red star lines) together with the evolution determined from our truncated CRWmodel (dashed lines)
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and direct numerical simulation (solid line) discussed in the next subsection. The final saturation amplitudes
obtained from the GLAE are translated to (QLG

kmax
≈ 0.24, QLG

2kmax
≈ 0.06) which stand in very good agreement

with the corresponding fixed point solution of the truncated CRW model (Qfp
kmax

≈ 0.27, Qfp
2kmax

≈ 0.05).

4.2 Direct numerical simulations

Another way to examine the validity of the CRW truncated model is to compare it with results from direct
numerical simulations. We use the smooth profile

U = 	δ

2

[
log

(
cosh

( y + 1

δ

))
− log

(
cosh

( y − 1

δ

))]
, (19)

inwhich δ controls the tightness of the transition zones representing the step function formof themean vorticity.
Taking δ = 0.05 and keeping the same normalization as defined in Section 2.3, we employ a pseudo-spectral
code (e.g., [27]) to solve the nonlinear equations of motion.2

In order to perform a meaningful comparison with the truncated CRW model in which wave-mean flow
interaction is absent, we run a series of numerical experiments in which the mean state is held fixed.3 We
initially perturb the flow with some small random noise, with vorticity values at the order of O(10−3)	.
The dynamical evolution is presented in Fig. 6. We plot a series of snapshots at different normalized times
t = 500, 1500, 1700, 2500, where we show the total vorticity (top panel), the perturbation vorticity (middle
panel) and the streamwise discrete Fourier transform (DFT) of the perturbation (lower panel). As is evident
from Fig. 6a, at the initial linear regime (t = 500), the most unstable mode n = 2 emerges. The perturbation
vorticity appears as a perfect sinusoidal wave, and its structure is tilted against the shear in a hindering-
growing configuration (in agreement with the linear theory). The calculated growth rate matches the linear
one, as expected. Later on at t = 1500 (Fig. 6b), the sinusoidal perturbation slowly distorts as the perturbation
grows and the double-harmonic (n = 4) appears. At this stage of the dynamics, the growth rate of the n = 2
mode begins to decrease as the perturbation of the double-harmonic n = 4 begins to grow. This evolution
stands in agreement with the truncated model. At t = 1700, Fig. 6c, the k + 2k = 3k interaction emerges
and the harmonic n = 6 appears. This interaction is not represented in our truncated model. Eventually during
the saturation stage at t = 2500, even higher harmonics are excited. Nevertheless, as is shown in Fig. 7, the
evolution of the (kmax, 2kmax) amplitudes is in overall agreement with the truncated model, as well as with the
GLAE (although the transition to the saturated stage in the simulation that occurs at t ≈ 1850 is more abrupt).
The final amplitude values in the simulation at saturation are (Qsat

k ≈ 0.38, Qsat
2k ≈ 0.07).

5 Discussion and Conclusions

In many central geophysical fluid dynamical setups, such as in the synoptic (Rhines) scale of the mid-latitude
troposphere, where the weather is highly variable, jets, Rossby waves and vortices coexist. Rossby waves
grow linearly via baroclinic instability in a nonnormal transient fashion on the expense of the sheared jet
and then deposit back part of their energy to the mean jet via nonlinear barotropic processes. Rossby waves
interact as well nonlinearly between themselves and break into vortices (e.g., [29]). Obviously, such scenarios
are highly complex. Nonetheless, for the linearized dynamics, simplified toy models (such as Eady [30],
Carney [31], Phillips [32] and Rayleigh [18]) were found valuable in explaining much of the essence of the
dynamics, especially the concepts of the mechanism of linearized growth of Rossby waves on the expense of
the sheared jets. These understandings serve as guiding tools when analyzing and rationalizing more realistic
scenarios. Furthermore, simplifiedquasi-NLwave–meanflow interactionmodels exist to describe the combined

2 The equations are solved using standard Fourier spectral methods [28], with a spatial resolution of 256 × 512 grid points
in the (x, y) directions, respectively. The model is periodic in x and y. As such, we adopt a mean vorticity profile q̄ which is
also periodic on the meridional scale Ly . With large values of Ly compared to the shear layer width Ly = Lx = 2λmax (thus
the most unstable mode has a quantized wavenumber n = 2). The normalized damping r is chosen so that the linear growth rate
would be the same as in the truncated nonlinear interaction (kci max ≈ 0.004). The dynamics in our numerical experiment mimic
the infinite Rayleigh model to a very good approximation. We use hyper viscosity proportional to ∇8 and impose the typical 2/3
dealiasing rule. The solution is advanced in time by a third-order Adams–Bashforth scheme.

3 In practice, it means automatically setting equal to zero all nonlinearities generating power into kx = 0 modes, as well as
vanishing the damping coefficient r operating on these modes.
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Fig. 6 Snapshots at selected times of the CRW evolution (t = 500, 1500, 1700, 2500), showing the total vorticity (top), the
perturbation vorticity (middle) and the streamwise discrete Fourier transform (DFT) of the perturbation (lower). a t = 500. Top
the schematic Rayliegh profile is added to the total vorticity field for reference. Middle evidently the most unstable mode has
emerged and is tilted against the shear. The red (blue) arrows demonstrate the cross-stream velocities associated with positive
(negative) vorticity anomalies, illustrating the linear growth mechanism. Bottom DFT of this perturbation shows that n = 2 is
indeed the dominantmode.b t = 1500.Top andmiddle the perturbation grows and the total vorticity field starts to be distorted. The
red (blue) arrows demonstrate the streamwise velocities associated with positive (negative) vorticity anomalies, illustrating the
nonlinear wave–wave interaction. Bottom the double harmonic n = 4 begins to emerge. c t = 1700. Top as the perturbations keep
growing, the total vorticity field becomes more distorted. Middle the sinusoidal perturbation slowly distorts as the perturbation
grows and other harmonics appear. Bottom the double harmonic n = 4 grows further and the n = 6 harmonic begins to appear. d
t = 2500. Top and middle the saturated steady state of the system. Bottom higher-order harmonics are eventually excited as well
due to nonlinear triad interactions
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Fig. 7 Time development of the CRWs vorticity amplitude for kmax (blue) and 2kmax (red), as determined from the weakly
nonlinear truncatedmodel (dashed lines), theGinzburg–Landau amplitude equation (star lines) and the direct numerical simulation
(solid lines). Overall, we obtain a good agreement between the three methods. All exhibit an exponential growth during the linear
stage, followed by a nonlinear saturation to finite amplitudes that occur roughly at the same time, with similar final saturated
amplitudes

baroclinic and barotropic equilibration (e.g., [33,34]) between Rossby waves and the jets; however, to the best
of our knowledge, no equivalent models exist to describe the fundamental mechanism of Rossby wave–wave
interaction in the presence of shear flow. We regard the study here as a first step in this direction. Thus, the
model is not aimed to describe a realistic setup but rather to provide a platform to study the Rossby wave–wave
interaction.

In this model, the linear and the NL CRW interaction mechanisms were found to be cleanly separated. The
linear interaction is via the cross-stream velocity, while the NL one is via the streamwise velocity. The latter
converges the vorticity perturbation of the remote CRW in a way that a CRW pair of the same wavenumber
k is continuously seeding anti-phased CRW pairs in wavenumber 2k. Since an anti-phase configuration is a
fully hindering one, these newly generated 2k CRW pairs are immediately shifted by the shear (in a nonnormal
fashion) into their growing regime. On the contrary, the backward interaction k ⇐ 2k acts generally to decay
the CRW pair of wavenumber k. This understanding is suggestive and may shed light upon the mechanism
that triggers systematic direct enstrophy cascade in 2D shear flows.

In the weakly nonlinear regime, such k ⇐⇒ 2k interaction can lead to a wave–wave saturated equilibrium
between the CRW pairs of k and 2k. For strong enough damping, the most unstable mode kmax is only slightly
unstable, and the 2kmax one is heavily damped. Nevertheless, the kmax ⇒ 2kmax interaction is efficient enough
to resist the strong linear damping of 2kmax, while the kmax ⇐ 2kmax interaction decreases efficiently the
linear growth of kmax. Consequently, the two CRW pairs arrive into a steady-state that can be predicted by a
semi-analytic truncated model. These results were verified independently by the derivation of the weakly NL
saturated behavior of the Ginzburg–Landau amplitude equation and by direct numerical simulations.

The Rayleigh model considered here is purely barotropic; thus, in order to prevent the flow from becom-
ing become fully turbulent, a strong damping has been imposed on the dynamics. However, realistic jets in
geophysical flows are generally both baroclinic and barotropic and do not experience transition to turbulence
due to the wave-mean flow processes mentioned above (and due to the effect of rotation). A straightforward
generalization of the NL Rayleigh model is a two-layer baroclinic model with a barotropic shear, in the pres-
ence of differential rotation (the latter can be represented by the β-plane approximation, for simplicity). We
currently explore the nature of Rossby wave–wave interaction in such a model.

Finally, another possible extension of the work is based on HM05 CRW kernel generalization to the
Rayleigh paradigm that can be applied to general smooth shear profiles. It is a straightforward step to include
the nonlinear CRW interaction between such CRW kernels. Since the action at a distance is formulated in
terms of Green functions, such generalization is relatively easy to implement in a numerical code. The CRW
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kernel approach has been generalized further by Rabinovich et al. [35] to include linear interaction between
modified Rossby-gravity kernel waves in shear flows in the presence of stratification. Similarly, we currently
generalize the approach to be applicable to linearized shear flow in the presence of surface tension between
immiscible fluids, and in the presence of the Lorentz force in plasma. The natural next step is to include the
nonlinear modified CRW kernel interaction to the dynamics of such smooth shear flows and then to examine
the weakly nonnormal–nonlinear feedback from the modified CRW kernel perspective.
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Appendix A: Nonlinear k ⇐⇒ 2k CRW interaction

The nonlinear vorticity flux convergence, resulted from the interaction between a CRW pair of wavenumber k
(k + k = 2k), can be written (in dimensional form) using (9) and (10b), as:

[
−∂(ukqk)

∂x

]±b

2k
= ± ∂

∂x

[
e−2kb

2
Q2

k cos
(
kx + ε−b

k

)
cos
(
kx + εbk

)]

= ∓k

2
e−2kbQ2

k sin [2 (kx + εk)] (A1)

where εk = 1
2 (ε

−b
k + εbk ). Hence, due to the asymmetry of the induced streamwise velocity, a CRW pair of

wavenumber k seeds nonlinearly anti-phased CRW pairs in wavenumber 2k:

∂

∂t

[
Qb

2k cos
(
2kx + εb2k

)]
= −k

2
e−2kbQ2

k sin [2 (kx + εk)]

= − ∂

∂t

[
Q−b

2k cos
(
2kx + ε−b

2k

)]
(A2)

Projecting (A2), first on the upper wave of 2k [i.e., multiplying Eq. (A2) by cos
(
2kx + εb2k

)
and integrate over

wavelength, and next on the lower one], yields:

Q̇b
2k = −k

2
e−2kbQ2

k sin
(
2εk − εb2k

)
, (A3a)

Q̇−b
2k = k

2
e−2kbQ2

k sin
(
2εk − ε−b

2k

)
(A3b)

Hence, for synchronous growth, Qb
2k = Q−b

2k = Q2k , 2εk = ε2k , and

Q̇2k = k

2
e−2kbQ2

k sin

(
�ε2k

2

)
(A4)

which is the dimensional form of the second term on the RHS of (12a). Repeating the procedure but projecting
(A2) on the quadrature of the two waves [that is multiplying (A2) by sin(2kx + ε±b

2k ) and integrating over

wavelength], and using the symmetry condition 2εk = ε2k , yields ε̇b2k = k
2e

−2kb Q2
k

Q2k
cos
(

�ε2k
2

)
= −ε̇−b

2k ,

hence
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Q2k
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(
�ε2k

2

)
(A5)

which is the dimensional form of the second term at the RHS of (12b).
Similarly, the backward nonlinear interaction (2k − k = k) can be written as:

[
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Since the streamwise velocity associated with wavenumber 2k on the opposed boundary decays twice strongly
than the one of wavenumber k, we neglect the former with respect to the latter. The term at the RHS then
becomes: ∓ k

4e
−2kbQkQ2k sin [kx + (ε±b

2k − ε∓b
k )], so that for the nonlinear evolution:

∂

∂t

[
Qk cos

(
kx + εbk

)]
= −k

4
e−2kbQkQ2k sin

[
kx +

(
εb2k − ε−b

k

)]
(A7a)
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k
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= k

4
e−2kbQkQ2k sin
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(
ε−b
2k − εbk

)]
(A7b)

Projecting (A7) on the two waves and on their quadratures, together with the symmetry condition, 2εk = ε2k ,
yields after some algebra

Q̇k = −k

4
e−2kbQkQ2k sin

(
�ε2k

2

)
(A8a)

�̇εk = k

2
e−2kbQ2k cos

(
�ε2k

2

)
(A8b)

which are the dimensional form of the second terms on the RHS of (11a, b), respectively.

Appendix B: Fixed point solutions

The steady-state solution and corresponding fixed point can be found by equating the RHS of (11) and (12) to
zero,

Q̇k =
{
[σk sin (�εk) − r ] − k

2
σk Q2k sin

(
�ε2k

2

)}
Qk = 0, (B1a)
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�̇ε2k = 2σ2k[cos (�ε2k) − f2k] + 2kσk
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�ε2k

2

)
= 0, (B2b)

which results, after some algebra, the fixed points
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]
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(Qk)
fp =

√
[r − σ2k sin (�ε2k)fp]
2[σk sin (�εk)fp − r ] (Q2k)

fp. (B4b)

To see this, note that from (B2a),

Q2
k

Q2k
= [r − σ2k sin (�ε2k)]

kσk sin
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�ε2k
2

) , (B5)
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and from (B2b),

Q2
k

Q2k
= σ2k [ fk − cos (�ε2k)]

kσk cos
(

�ε2k
2

) . (B6)

Hence, comparing these two expressions, one finds
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Plugging into (B7) the identities sin (�ε2k) = 2 sin
(
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it can be easily shown that
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so the fixed point solution indeed satisfies
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In addition, from (B1a)
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and from (B1b)

cos

(
�ε2k

2

)
= 2σk[ fk − cos (�εk)]

kσk Q2k
. (B11)

Dividing these two expressions, one finds
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Equation (B12) can be rearranged in the form

σk[sin
(

�ε2k

2

)
cos (�εk) + cos

(
�ε2k

2

)
cos (�εk)] = r cos

(
�ε2k

2

)
+ fk sin

(
�ε2k

2

)
. (B13)
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where we have substituted expression (B8) to get the last equality. Given �ε
fp
2k from Eq. (B9), �ε
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which is the fixed point solution.
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The expression for the steady-state amplitude Q2k can be found directly from (B11) [or equivalently (B10)],
given the expressions for �ε

fp
k , �ε

fp
2k , as

(Q2k)
fp = 2

[ fk − cos (�εk)
fp]

k cos[ (�ε2k )
fp

2 ]
. (B16)

Finally, given all the fixed point expressions above, Qk can be found directly from (B5) [or equivalently (B6)],
which gives

(Qk)
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√
[r − σ2k sin (�ε2k)fp]
2[σk sin (�εk)fp − r ] (Q2k)

fp. (B17)

Appendix C: Derivation of G–L amplitude equation

This appendix shows in detail the Ginzburg–Landau equation derivation. For the sake of completeness, we
develop here the standard form of the Ginzburg–Landau equation, which takes into account slow spatial
variations that result from the participant of wavenumbers at the vicinity of kmax. However, in the truncated
CRWmodel, only the interaction of themost unstablemode kmax is considered. Hence, for comparison, we later
assume that the solution is entirely described by the maximal mode and neglect the slow spatial variations.4

When the departure frommarginality is small, we can define ε as a small parameter so that (k−kmax) ≡ εδk,
and accordingly (rc − r) ≡ ε2δr (where δk and δr are assumed of order one). Then the modes in the vicinity
of kmax can be written as:

q ′
k(x, y, t) =

[
qk(y)e

δrT eikmaxx
]
eiδkXe−b(δk)2T + c.c.

≈ q ′
kmax

eiδkXe−b(δk)2T + c.c. (C1)

where X ≡ εx , T ≡ ε2t . Hence, the unstable modes have approximately the structure of the most unstable
one with an envelope that varies slowly in the streamwise direction, and decays, even slower, with time. The
general weakly nonlinear solution is therefore expected to be a function of (x, X, T, y) so that all differential
operators are expressed in the form ∂

∂x → ∂
∂x + ε ∂

∂X and ∂
∂t → ε2 ∂

∂T . In order to proceed with a classical
weakly nonlinear solution calculation, we adopt a continuous vorticity profile that closely approximates the
step profile, as that given by Eq. (19).

Weakly nonlinear solutions of (A1) are assumed to be represented by the following series expansions

q = q0 + εq1 + ε2q2 + ε3q3 + · · · ; ψ = ψ0 + εψ1 + ε2ψ2 + ε3ψ3 + · · ·
u = u0 + εu1 + ε2u2 + ε3u3 + · · · ; v = εv1 + ε2v2 + ε3v3 + · · · ,

where q0, u0 andψ0 are the mean flow quantities q,U andψ , respectively. With the special parameters chosen
above, the next order ε solution is the marginal state, written as

ψ1(x, X, T, y) = A(X, T )ψ̃1(y)e
ikcx + c.c. (C2)

where ψ̃1(y) is the normalized eigenfunction of the most unstable mode and A is the amplitude.
In the following derivations, we use the subscript notation to denote partial derivatives (∂y ≡ ∂

∂y , ∂T ≡ ∂
∂T

and so on). Adopting the expansions described here and applying them directly into the vorticity Eq. (1) and
the diagnostic expressions ∇2ψ = q, u = −∂yψ, v = ∂xψ, reveals

4 The slow variation of the amplitude in the streamwise direction becomes significant only for length scales which are much
larger than the typical wavelength scale λmax = 2π/kmax. Hence, for comparison with the truncated CRW model, we exclude
slow spatial variations, bearing in mind that the focus is on length scales at the order of λmax.
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[
ε2∂T + (u0 + εu1 + ε2u2 + ε3u3)(∂x + ε∂X ) + (εv1 + ε2v2 + ε3v3)∂y

] (
q0 + εq1 + ε2q2 + ε3q3

)

= −(rc − ε2r2)
(
εq1 + ε2q2 + ε3q3

)
, (C3)

(
∂2x + 2ε∂x∂X + ε2∂2X + ∂2y

)
(ψ0 + εψ1 + ε2ψ2 + ε3ψ3) = q0 + εq1 + ε2q2 + ε3q3, (C4)

u0 + εu1 + ε2u2 + ε3u3 = −∂y
(
ψ0 + εψ1 + ε2ψ2 + ε3ψ3

)
, (C5)

εv1 + ε2v2 + ε3v3 = (∂x + ε∂X )
(
εψ1 + ε2ψ2 + ε3ψ3

)
. (C6)

The next proceeder is to solve Eqs. (C3–C6) order by order in powers of ε, impose a solvability condition and
arrive at an amplitude equation. Note that at each order, we solve a series of forced boundary value problems
which are determined numerically using a Chebyshev decomposition.

C.1 Order 0

Because q0 = q(y), it follows that the leading order equations reduce to the mean streamfunction ψ0(y) and
corresponding mean wind, u0(y), as solutions to

∂2yψ0 = q0 (C7)

where the mean wind is specifically given by u0 = −∂yψ0. Because q0 depends upon y only, there is no
corresponding vertical velocity function v0 at leading order. These are the same mean states perturbed in the
linear theory section before.

C.2 Order ε

At next order in ε the Eqs. (C3–C6) are

u0∂xq1 + v1∂yq0 = −rcq1, (∂2y + ∂2x )ψ1 = q1, (C8)

u1 = ∂yψ1, v1 = ∂xψ1,

with the boundary conditionψ1(y → ±L) → 0. Because this expansion procedure is built around themarginal
solutions with a critical wavenumber k = kc, solutions of the form

⎛

⎜
⎝

q1
ψ1
u1
v1

⎞

⎟
⎠ =

⎛

⎜
⎝

q11
ψ11
u11
v11

⎞

⎟
⎠ eikcx + c.c. (C9)

are assumed. The above equations may be combined into a single one for ψ11

Lψ11 = 0, L ≡ ∂2y − k2c + ikcq0y
ikcu0 + rc

, (C10)

The solutions of (C10) in which ψ11 → 0 as y → ±L are the eigenfunctions describing the marginal state.
If we denote ψ̃11(y) as the normalized base eigenfunction that satisfy limL→∞

∫ L
−L |ψ̃11|2dy = 1, then the

general solution for ψ11 is given by

ψ11(X, T, y) = A(X, T )ψ̃11(y) + c.c. (C11)

where the arbitrary amplitude A is yet to be determined. It follows therefore that

q11 = Aq̃11, u11 = Aũ11, v11 = Aṽ11; (C12)

where

q̃11 = (∂2y − k2c )ψ̃11, ũ11 = −∂yψ̃11, ṽ11 = ikcψ̃11. (C13)

Before proceeding we note the following: multiplying (C10) by a function ψ† and integrating between ±L
gives
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∫ L

−L
ψ†Lψ11dy = [ψ†∂yψ11

]y→L
y→−L − [ψ11∂yψ

†]y→L
y→−L +

∫ L

−L
ψ11Lψ†dy = 0, (C14)

As long as ψ11(y → ±L) = 0 and ψ†(y → ±L) = 0 it must follow that
∫ L
−L ψ11Lψ†dy = 0, and this

statement is trivially satisfied for ψ† = ψ11.
Henceforth, the integral product of two quantities shall be symbolically represented by 〈 f g〉 ≡∫ L

−L ( f · g) dy

C.3 Order ε2

The equations at the next order are

u0∂xq2 + u1∂xq1 + u0∂Xq1 + v2∂yq0 + v1∂yq1 = −rcq2 (C15)

(∂2y + ∂2x )ψ2 + 2∂X∂xψ1 = q2, (C16)

u2 = −∂yψ2v2 = ∂xψ2 + ∂Xψ1. (C17)

We can combine the above set of equations into a single one for ψ2

[(u0∂x + rc)
(
∂2y + ∂2x

)
+ q0y∂x ]ψ2 =

−u1∂xq1 − v1∂yq1 − u0∂Xq1 − 2 (u0∂x + rc) ∂X∂xψ1 − q0y∂Xψ1. (C18)

with the boundary condition v2 → 0 as y → ±L .
Note that the form of Eq. C18 is of a linear operator acting on ψ2 with known source terms on its RHS.

Analysis of these terms shows that they must be proportional to e±ikcx , e±2ikcx , or independent of x . Defining
the vectorV2 ≡ [q2, ψ2, u2, v2]T (where the superscript “T” denotes the vector transpose), the general solution
at this order may be written as

V2 = V20 +
(
V21e

ikcx + V22e
i2kcx + c.c.

)
, (C19)

where V2i ≡ [q2i (y), ψ2i (y), u2i (y), v2i (y)]T, with i = 0, 1, 2. The RHS of (C18) can thus be rewritten in
the form

[(u0∂x + rc)
(
∂2y + ∂2x

)
+ q0y∂x ]ψ2 = R20 +

[
R21e

ikcx + R22e
i2kcx + c.c.

]
, (C20)

where

R20 = |A|2ikc∂y
(
q̃11ψ̃

∗
11 − q̃∗

11ψ̃11

)

R22 = A2ikc
(
q̃11∂̃yψ11 − ψ̃11∂yq̃11

)

and

R21 = −AX
[
(ikcu0 + rc)2ikc + q0y

]
ψ̃11 − AXu0q̃11. (C21)

with the notation AX ≡ ∂X A. In order to establish the solutions to the y-structure functions associated with
each Fourier component, we re-express the general solution form in terms of ψ2 only

ψ2 = ψ20 +
(
ψ21e

ikcx + ψ22e
i2kcx + c.c.

)
, (C22)

and address each Fourier component individually.
For the zeroth Fourier component, we have ψ20 = |A|2ψ̃20 in which ψ̃20 is the solution of

q̃20 = ∂2y ψ̃20 = ikc
rc

∂y

(
q̃11ψ̃

∗
11 − q̃∗

11ψ̃11

)
, (C23)
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where the superscript “∗” denotes complex conjugate. Since (C23) is written in exact differential form, it
follows that that u20 = |A|2ũ20 with

ũ20 = − ikc
rc

(
q̃11ψ̃

∗
11 − q̃∗

11ψ̃11

)
. (C24)

Consistently, it also follows that v20 = 0. Note that (C23) is the equation establishing the amount of mean
flow adjustment that occurs due to classical wave–mean flow interaction. It measures the balance between the
“dissipation” due to the vorticity forcing (rc∂2yψ20) and the convergence of the momentum flux (embodied by
R20).

For the 2kc Fourier component, we find that ψ22 = A2ψ̃22 in which ψ̃22 is the solution of

L2ψ̃22 =
[
∂2y − (2kc)

2 + (2ikc)q0y
u0(2ikc) + rc

]
ψ̃22 = ikc

u0(2ikc) + rc

(
q̃11∂yψ̃11 − ψ̃11∂yq̃11

)
, (C25)

in which ψ̃22 → 0 as y → ±L . It follows that

q22 = A2q̃22, u22 = A2ũ22, v22 = A2ṽ22;
where

q̃22 = (∂2y − 4k2c )ψ̃22, ũ22 = −∂yψ̃22, ṽ22 = i2kcψ̃22.

For the kc component, it follows that ψ21 = AX ψ̃21 in which ψ̃21 is the solution of

Lψ̃21 = −
(
2ikc + q0y

u0ikc + rc

)
ψ̃11 − u0q̃11

u0ikc + rc
. (C26)

Since the operator on ψ̃21 appearing on the LHS of (C26) is the same as the lowest order linear operator at
O(ε), in order for a solution to exist in which ψ21 → 0 as y → ±L , the RHS of (C26) must project onto
the nullspace of the operator L. However, this is satisfied by virtue of the fact we are expanding around the
marginal state of the system. In other words, by the choice of parameters we have started with, it follows
automatically that

〈
ψ†Lψ̃21

〉
= −

〈
ψ†
[(

2ikc + q0y
u0ikc + rc

)
ψ̃11 + u0q̃11

u0ikc + rc

]〉
= 0, (C27)

recalling thatψ† = ψ̃11. It similarly follows that the remainder quantities are constructed out of ψ̃21 according
to,

q21 = AX q̃21, u21 = AX ũ21, v21 = AX ṽ21;
q̃21 = (∂2y − k2c )ψ̃21, ũ21 = −∂yψ̃21, ṽ21 = ikcψ̃21 + ψ̃11.

C.4 Order ε3: Solvability and amplitude equation

The equations at this order are

∂T q1+ u2∂xq1+ u1∂Xq1+ u1∂xq2+ u0∂xq3 + u0∂Xq2+ v1∂yq2+ v2∂yq1+ v3∂yq0 = −rcq3 − r2q1 (C28)

(∂2y + ∂2x )ψ3 + 2∂x∂Xψ2 + ∂2Xψ1 = q3 (C29)

u3 = −∂yψ3 (C30)

v3 = ∂xψ3 + ∂Xψ2 (C31)

Solutions to this set of equations will have the general form

V3 = V30 +
(
V31e

ikcx + V32e
i2kcx + V33e

i3kcx + c.c.
)

, (C32)
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whereV3i ≡ [q3i (y), ψ3i (y), u3i (y), v3i (y)]T. Instead of establishing this general solution, we seek to sort out
a partial solution by establishing a necessary condition for the existence of a solution. We combine (C28–C31)
into a single equation for ψ3

[(u0∂x + rc)(∂
2
y + ∂2x ) + q0y∂x ]ψ3 = R30 + [R33e

i3kcx + R32e
i2kcx + R31e

ikcx + c.c.] (C33)

For our purposes, it is enough to analyzeR31 as it will be this term that governs the existence of a solution at
this order. Since we have the ansatz

ψ3 = ψ30 +
(
ψ33e

i3kcx + ψ32e
i2kcx + ψ31e

ikcx + c.c.
)

(C34)

we are concerned with the development of ψ31. The equation governing its form is

Lψ31 = R31

ikcu0 + rc
, (C35)

where the operator L is as given in (C10) and where

R31 = −AT q̃11 + r2Aq̃11 − AXX [−2u0k
2
c ψ̃21 + ikcu0ψ̃11 + u0q̃21 + q0yψ̃21]

−A|A|2[−ikcũ22q̃
∗
11 + 2ikcq̃22ũ

∗
11 + ṽ∗

11∂yq̃22 + ṽ22∂yq̃
∗
11 + ikcũ20q̃11 + ṽ11∂yq̃20]. (C36)

In order for ψ31 to be able to satisfy the boundary condition ikcψ31 → 0 as y → ±L , it must be thatR31 lies
in the null space of the operator L (just as it was the case for the solution for ψ21). This means that it must
follow that

〈
ψ† R31

ikcu0 + rc

〉
= 0. (C37)

This may be satisfied if the amplitude A satisfies the Complex Ginzburg–Landau equation

∂A

∂T
= δr A − γ AXX − (β2k + β0)A|A|2 (C38)

where

γ = 1
〈

ψ†q̃11
ikcu0+rc

〉

〈
ψ†
(
−2u0k2c ψ̃21 + ikcu0ψ̃11 + u0q̃21 + q0yψ̃21

)

ikcu0 + rc

〉

,

β2k = 1
〈

ψ†q̃11
ikcu0+rc

〉

〈
ψ†
(−ikcũ22q̃∗

11 + 2ikcq̃22ũ∗
11 + ṽ∗

11∂yq̃22 + ṽ22∂yq̃∗
11

)

ikcu0 + rc

〉

,

β0 = 1
〈

ψ†q̃11
ikcu0+rc

〉

〈
ψ†
(
ikcũ20q̃11 + ṽ11∂yq̃20

)

ikcu0 + rc

〉

.

For comparison with the truncated CRWmodel, which involves only the most unstable mode, we set Axx = 0
as explained above. In addition, for a time independent mean flow, β0 = 0 since ũ20 = q̃20 = 0 by definition.
Hence, keeping only thewave–wave nonlinear interaction k ⇐⇒ 2k represented by the termβ2k , theGinzburg–
Landau equation is simplified to:

∂A

∂T
= δr A − β2kA|A|2. (C39)
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