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ABSTRACT

Barotropic eddy fluxes are analysed through the geometric properties of the eddy stress tensor. The eddy
variance ellipse, describing the mean eddy shape and tilt, is used to elucidate eddy propagation and eddy
feedback on the mean flow. Linear shear and jet profiles are analysed and the theoretical results are compared
against fully nonlinear simulations. For flows with zero background vorticity gradient, analytic solutions are
obtained and provide a direct relationship between the geometric eddy tilt and the phase difference of a normal
mode solution. This allows a straightforward interpretation in terms of classical stability theory: the initially
unstable jet gives rise to eddies which are tilted against the shear and extract energy from the mean flow. Once
the jet stabilizes, eddies become tilted with the shear and return their energy to the mean flow. For a nonzero
background vorticity gradient ray-tracing theory is used to investigate eddy propagation within the jet. An
analytic solution for the eddy tilt is found for a linear plane Rossby wave on a constant background shear. The
ray tracing results broadly agree with the eddy tilt diagnosed from a fully nonlinear simulation.

1. Introduction

The dynamics of the large scale ocean is strongly de-
pendent upon the effect of the small scale turbulent eddy
field. The Gent-McWilliams parameterisation (Gent and
McWilliams 1990; Gent et al. 1995) is now a key ingre-
dient in coarse resolution ocean circulation models (e.g.,
Fox Kemper et al. 2013) and can be interpreted as mod-
elling the downward flux of momentum due to eddy form
stresses (Greatbatch 1998). This vertical momentum eddy
transfer plays a fundamental role in the dynamics of the
Southern Ocean (e.g. Johnson and Bryden 1989; Danaba-
soglu et al. 1994).

While horizontal momentum fluxes are less significant
from a global perspective, they can play important roles in
the dynamics of inertial jets. For example they influence
the dynamics of western boundary currents, where they
are instrumental in transferring energy between the mean
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shear and eddies (Waterman and Jayne 2011; Waterman
et al. 2011; Waterman and Jayne 2012). Horizontal eddy
stresses are not captured by the Gent and McWilliams pa-
rameterisation, and their effect is not typically represented
in coarse resolution ocean models (although see e.g. Eden
(2010) for an exception). This paper focuses on the study
of these horizontal momentum fluxes and their geometric
properties.

A number of authors have utilised the Taylor-Bretherton
identity (Taylor 1915; Bretherton 1966b; Plumb 1986) to
express eddy forcing of the mean flow as the divergence of
an eddy stress tensor (Lee and Leach 1996; Cronin 1996;
Gent and McWilliams 1996; Young 2012; Marshall et al.
2012; Maddison and Marshall 2013). This formulation
leads to a geometric interpretation and, in particular, in
the quasi-geostrophic limit leads to a decomposition of the
eddy stress in terms of the eddy energy and a number of
geometric parameters.

In the barotropic limit this tensor contains the horizon-
tal momentum fluxes, or Reynolds stresses. A norm of
this tensor is bounded in terms of the eddy kinetic energy,
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and this allows its components to be rewritten in terms of
the eddy energy and nondimensional parameters describ-
ing shape and orientation (Marshall et al. 2012; Waterman
and Lilly 2015). This yields a geometric picture, whereby
the eddy stress is represented in terms of a variance ellipse
(e.g. Morrow et al. 1994; Scott et al. 2008), and is equiv-
alent to a principle component analysis of the anisotropic
part of the eddy momentum stresses (Preisendorfer 1988;
Waterman and Hoskins 2013).

In Waterman and Hoskins (2013), the geometric prop-
erties of the horizontal velocity covariance tensor are
used to study the eddy-mean flow interaction in idealized
western boundary jet extensions using a barotropic quasi-
geostrophic model. An unstable jet is forced at the bound-
ary of the domain and allowed to evolve freely in the in-
terior. The time mean variance ellipses show signatures
of jet instability in the upstream unstable region of the
jet, and wave radiation in the downstream region. Fur-
ther, diagnostics of the tilt and anisotropy are shown to
be responsible for strengthening and extending the jet in
the downstream region, eventually forcing the time-mean
recirculation gyres.

The focus of this paper is to study how the geometric in-
terpretation of the eddy fluxes relates to familiar concepts
from classical linear stability theory. We study three ide-
alised barotropic configurations: a piecewise linear shear
on an f -plane, a piecewise linear jet on an f -plane, and a
piecewise linear jet on a β -plane.

For the piecewise linear shear layer on an f -plane, it is
shown in the linear case that the eddy tilt is exactly pro-
portional to the normal mode phase difference, yielding
a direct interpretation of the eddy tilt in terms of classi-
cal stability theory; eddies extract energy from the mean
flow when they lean against the shear, consistent with in-
stability, and return energy to the mean flow when they
lean with the shear, consistent with stability. The results
are additionally interpreted using a Counter-Propagating
Rossby Wave perspective (e.g., Bretherton 1966a; Heifetz
et al. 1999).

For the piecewise linear jet on an f -plane, an explicit
solution is also achieved in the linear case. In addition, we
perform a direct numerical simulation which agrees very
well with the analytic solution (during the linear stages),
and allow a straightforward interpretation in terms of sta-
bility arguments. These problems demonstrates the rela-
tionship between the eddy variance ellipse, which is con-
ceptually an abstract geometric parameter, and the phase
difference between the wave vorticity anomalies.

For the piecewise linear jet on the β -plane, although no
analytic solution is presented, these concepts still hold and
are used to analyse the dynamics. We diagnose the vari-
ance ellipse at different stages of the evolution and show
how it corresponds to different characteristics of the zonal
mean jet. The eddy tilt and the group velocity (which
are intimately related) have in this case a more complex

meridional structure, which is a result of the refraction of
rays within the jet. Using ray tracing theory, an analytic
solution is derived for rays propagating within the layers
(far from the interfaces), where only the influence of the
β term and a constant shear is felt. The analytic ray trac-
ing solution agrees well with results from a fully nonlinear
simulation, with energy radiated into the jet core in the un-
stable regime and outward in the stable regime.

In each case there is a clear link between the geometric
interpretation and the stability of the mean flow. Hence
the geometric framework provides an intuitive and unified
description of the exchange of energy between the mean
flow and the eddies, the direction of eddy propagation, and
the orientation of the eddies with respect to the mean shear.

The paper is organized as follows. In Section 2 we re-
view the basic ingredients of eddy-mean flow interaction
from a geometric perspective. In Section 3 we employ the
geometric decomposition for simple barotropic flows. We
present analytic results for a piecewise linear shear layer
and piecewise linear jet on an f -plane. For the latter, re-
sults are also compared to a direct numerical simulation.
A numerical simulation for the case of a barotropic piece-
wise linear jet on a β plane is presented and the geometric
perspective is used to analyse the dynamics. We discuss
the relationship between these results and those described
in Waterman and Hoskins (2013) for a zonally evolving
jet. In Section 4 ray tracing theory is reviewed and used
to develop an analytic solution for the piecewise linear jet
on a β -plane. The theoretical predictions are compared
against the results from a fully non-linear simulation. In
section 5 the key results are summarised, with a discus-
sion as to how the ideas developed in this article may be
exploited to parameterise eddy Reynolds stresses in nu-
merical ocean circulation models.

2. Geometric framework

a. Theoretical background

The mean barotropic vorticity equation, neglecting
forcing and dissipation, can be written as

∂ q̄
∂ t

+ ū ·∇q̄ =−∇ · (u′q′) (1)

where the bar signifies an appropriate averaging operator
and the prime is a deviation from that average1,

q = f +
∂v
∂x
− ∂u

∂y
(2)

is the absolute vorticity, f is the planetary vorticity and u
is the non-divergent velocity. The eddy vorticity forcing,

∇ · (u′q′) =
(

∂ 2

∂x2 −
∂ 2

∂y2

)
u′v′+

∂ 2

∂x∂y

(
v′2−u′2

)
, (3)

1The averaging operator is linear, commutes with the partial deriva-
tives ∂/∂x, ∂/∂y, ∂/∂ t and satisfies a Cauchy-Schwartz inequality such
that a′b′

2 ≤ a′2 b′2, with a′2 ≥ 0.
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originates from the double divergence of the eddy flux ten-
sor,

T =

(
N M−K

M+K −N

)
, (4)

where
M =

1
2

(
v′2−u′2

)
, N = u′v′ (5)

represent the eddy momentum fluxes or Reynolds stresses
and

K =
1
2

(
u′2 + v′2

)
(6)

is the eddy kinetic energy.
As described in Maddison and Marshall (2013), since

the double divergence of the eddy flux tensor is the eddy
vorticity tendency, the divergence of the eddy flux tensor
is equal to the eddy vorticity flux plus a rotational term,
i.e., there are two sources of gauge freedom. In particular,
the vorticity equation is unaffected by the addition of any
antisymmetric tensor to the eddy flux tensor. Hence, for
this simple case, we can eliminate the eddy kinetic energy
term, which contributes only rotational flux, and choose

T∗ =
(

N M
M −N

)
. (7)

The eddy flux tensor is closely related to the eddy stress
tensor whose divergence appears as the eddy forcing on
the right-hand side of the residual-mean momentum equa-
tion (e.g., Hoskins et al. 1983; Plumb 1986; Cronin 1996;
see Maddison and Marshall 2013 for further details).

Hoskins further consider the gauge

TH
∗ =

(
N 2M
0 −N

)
(8)

and thus, by considering the limit where Nxx ≈ 0, define
the E-vector, EH = (2M,−N)T , that captures the dynami-
cally significant components of the eddy flux tensor.2 This
has proven very useful in studying the eddy-mean flow in-
teraction, especially in the atmospheric context. In gen-
eral, different gauge choices lead to different eddy stress
tensors and corresponding residual mean velocities (see
Maddison and Marshall 2013 for a detailed discussion),
but the overall dynamics is unaffected by the choice of
gauge.

b. Geometric decomposition

Following Hoskins et al. (1983) and Waterman and
Hoskins (2013), the eddy flux tensor (7) can provide in-
formation on the average eddy shape, orientation, propa-
gation and mean flow feedback. In the rest of the section
we will review some of the fundamental ideas behind the
geometric decomposition and its relation to the eddy-mean
flow interaction.

2Strictly EH is a quasi-vector since it does not transform as a vector
(Hoskins et al. 1983)

FIG. 1. (a) Eddy variance in the (u′,v′) space is represented by an
ellipse with a major and minor axes (the red and blue lines denoted as
A and B, respectively) (see also Marshall et al. (2012) figure 3 (a)). (b)
Depending on the signs of the Reynolds stresses M and N, the diagram
shows the corresponding location of the major axis (with a π rotation
symmetry). The x̂ and ŷ axes correspond to solutions with N = 0, for
which the eddy ellipse is either zonally or meridionaly elongated, while
the dashed lines correspond to solutions with M = 0 (see also Waterman
and Hoskins (2013) figure 2). (c) Schematic illustration of possible eddy
ellipse anisotropy, from γ = 0 which is a perfect circle to γ = 1 which
is a line. (d) Schematic illustration of possible eddy ellipse tilt. For θ =
π/2 the eddy ellipse is stretched along the meridional direction, while
for θ = 0 it is along the zonal direction. For 0 < θ < π/2 (“positive
tilt”) the major axis is within the first quadrant, and for −π/2 < θ < 0
(“negative tilt”) it is in the fourth quadrant.

Since the Reynolds stresses satisfy M2 + N2 ≤ K2, a
norm of the eddy stress tensor is bounded in terms of the
eddy kinetic energy. Hence, one may write, without loss
of generality,

M =−γK cos2θ , N = γK sin2θ (9)

where 0 ≤ γ ≤ 1 is an anisotropy parameter, determined
by the ratio of the Reynolds stresses to the eddy kinetic
energy,

γ =

√
M2 +N2

K
, (10)

and the orientation of the averaged eddy momentum fluxes
satisfies

tan2θ =−N
M
, (11)

where we define −π/2≤ θ ≤ π/2.
The correct quadrant of θ depends on the signs of M

and N (see Fig.1b). These parameters are exactly the ve-
locity variance ellipse eccentricity and tilt, described in
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Preisendorfer (1988), which characterize an ellipse whose
major and minor axes explain the velocity covariance.
Fig.1a shows a schematic illustration of the variance el-
lipse and its characteristics.

The eddy velocity correlation can plotted in the (u′,v′)
space, where each point is measured at a different time
during the evolution of the flow (or at a different spatial lo-
cation). The time (or spatially) averaged “eddy” can then
be represented by an ellipse, as in Fig.1a, with a semi-
major A and semi-minor B axes (the red and blue lines,
respectively), given by

A =
√

2(1+ γ)K; B =
√

2(1− γ)K (12)

Note that this ellipse does not, in general, have a direct
relation to the eddy structure in the physical (x′,y′) space.

The tilt θ of the ellipse describes the locally dominant
direction of the eddy momentum fluxes. The eccentricity
or anisotropy parameter γ describes how preferentially the
momentum fluxes are directed in this dominant direction.
Values of anisotropy close to unity (high anisotropy) imply
that the eddy momentum fluxes are strongly oriented in the
direction of the ellipse tilt. If γ = 1, for which the ellipse is
a straight line, then the momentum flux in the direction or-
thogonal to the tilt is zero. Conversely if γ = 0, for which
the ellipse is a circle, momentum fluxes are isotropically
distributed in all directions and there is no locally domi-
nant eddy momentum flux direction. A general mapping
of the major axis tilt, for different signs of the Reynolds
stresses M and N, is shown in Fig.1b. The diagram shows
the corresponding octant of the major axis, which is sym-
metric under ±π rotations. Fig.1c shows some possible
eddy ellipse anisotropies, and Fig.1d is a schematic illus-
tration of possible eddy ellipse tilts.

c. Relation to propagation of eddy activity

A further interesting relation exists, in certain cases,
between the direction of the relative group velocity3 of
eddy activity, and the eddy variance ellipse (Plumb 1986;
Hoskins et al. 1983; Maddison and Marshall 2013; Water-
man and Hoskins 2013). The relation between the tilt and
group propagation, described in Hoskins et al. (1983) and
Waterman and Hoskins (2013), are key to the ray tracing
analysis of Section 4. Specifically, it follows that for a two
dimensional plane wave with streamfunction4

ψ
′ = ψ̂ei(kx+ly−ωt), (13)

we have γ = 1 and the eddy ellipse tilt is given by

tan2θ =
2kl

k2− l2 . (14)

3Here the “relative” group velocity refers to the group velocity rel-
ative to the mean. Thus is also known as the “intrinsic” group velocity
(e.g., Buhler 2009).

4Hereafter it is understood that the real part of complex functions is
to be taken where relevant.

FIG. 2. The relation between the eddy ellipse axis and direction of
the relative group velocity (after Fig.4 of Hoskins et al. 1983). Plotted
are different eddy ellipse tilts and the corresponding direction of the
relative group velocity cgR = cg− ū (red arrows) for q̄ = βy (with β >
0). The dashed black line shows the major axis of the eddy ellipse, and
the red arrow is the relative group velocity. The first row is characterized
by N ≥ 0 and cgRy ≤ 0 while for the second row N ≤ 0 and cgRy ≥ 0.

Since velocity anomalies are aligned with the direction of
phase propagation for a plane wave, the eddy ellipse tilt
also satisfies

tanθ =
l
k
. (15)

It is straightforward to show that (14) and (15) are equiva-
lent through a standard trigonometric identity.

Furthermore, assuming the barotropic Rossby wave dis-
persion relation on a β -plane,

ω = ūk− βk
k2 + l2 , (16)

where the mean flow is zonal and constant, or slowly vary-
ing, ū = (ū,0). If follows from direct substitution of

cgx =
∂ω

∂k
= ū+

β (k2− l2)

(k2 + l2)2 , cgy =
∂ω

∂ l
=

2βkl
(k2 + l2)2

(17)
that

cgR = cg− ū =
β

1
2 q′2

(M,−N) . (18)

Hence, if θCgR is the angle of the relative group velocity
(the subscript R indicating “relative to the mean flow”), we
find that

tanθCgR =
cgy

cgx− ū
=−N

M
=

2kl
k2− l2 . (19)

Thus
θCgR = 2θ ∓π, (20)

where the minus sign corresponds to N > 0 and the pos-
itive sign corresponds to N < 0, chosen such that −π ≤
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θCgR ≤ π . The need for the phase shift is clear from con-
sidering the signs of M and N in (18). These relationships
are summarised in Fig.2. The first row corresponds to sit-
uations in which N ≥ 0 and the eddy ellipse tilt is positive
giving cgRy ≤ 0; conversely the second row corresponds
to situations in which N ≤ 0 and the eddy ellipse tilt is
negative giving cgRy ≥ 0.

Note that in the more general case,

cgR =
1

1
2 q′2

(
M

∂ q̄
∂y

+N
∂ q̄
∂x

, M
∂ q̄
∂x
−N

∂ q̄
∂y

)
, (21)

i.e., the relation (18) still holds but in a coordinate system
rotated along and across the mean absolute vorticity gra-
dient (Hoskins et al. 1983; Waterman and Hoskins 2013).

3. Geometric decomposition for piecewise linear flows

In order to study the geometric properties of the eddy
fluxes, we consider simple configurations consisting of a
barotropic piecewise linear shear layer and a piecewise lin-
ear jet. For the cases where only shear instability is con-
sidered (i.e., on an f plane), analytic solutions are found
for the linear normal modes, and the geometric decompo-
sition of the eddy stress tensor is calculated directly. Nu-
merical simulations of the barotropic jet are performed on
both f and β planes and these are compared against the
normal mode solutions. The eddy-mean flow interaction
is examined via diagnostics of the geometric properties of
the eddy stress tensor. For the case of a barotropic jet on
a β plane, ray tracing theory is used to explain the merid-
ional structure of the eddy ellipse, and in particular how
this is related to the propagation of eddy activity.

a. Piecewise linear shear layer on an f -plane

For a single shear layer with negative vorticity embed-
ded by two infinite layers of zero vorticity (the Rayleigh
model, see Fig.3a), we find that the eddy tilt is directly
related to the normal mode phase difference. This allows
a direct interpretation of the eddy tilt in terms of the linear
wave instability results.

Consider the Rayleigh model basic state sketched
schematically in Fig.3a, that supports the existence of
counter propagating Rossby wave pairs on the two sides
of the shear layer, whose zonal mean velocity and vortic-
ity are given by:

ū(y) =


Λb
Λy
−Λb

y≥ b
−b≤ y≤ b

y≤−b
, (22)

q̄(y) =


0
−Λ

0

y > b
−b < y < b

y <−b
. (23)

FIG. 3. (a) The Rayleigh model (left), a piecewise linear velocity
profile of a single shear layer with negative vorticity embedded by two
infinite layers of zero vorticity. At y = ±b the mean flow vorticity is
discontinuous, yielding a positive/negative mean vorticity gradient delta
function there, respectively. (b) Schematic illustration of the most un-
stable normal mode configuration, which is composed of two phased
locked counter propagating Rossby waves (εkmax

∼= 0.65π ), and the cor-
responding eddy ellipse (red ellipse), which is tilted against the shear.
The ellipse tilt θ is related to the normal mode phase difference by
θ = εNM/2+ π/2. The ±q symbols denote positive/negative vortic-
ity anomalies, and the arrows show the circulation they induce. (c) The
eddy ellipse tilt θ ≈−0.17π given by the normal mode solution, which
is constant within the shear layer.(d) The eddy ellipse anisotropy. For
reference, cosh−1(2ky) is shown in light red. At y=±1 and at the center
of the shear layer γ = 1 (here y = y/b is the nondimensional meridional
coordinate).

Let the bar and prime now indicate zonal mean and per-
turbation respectively. For horizontally nondivergent ed-
dies, we have

u′q′ =
∂M
∂y

, v′q′ =−∂N
∂y

, (24)

Hence, in those regions where q′ = 0, both M and N are
independent of y. We therefore need to determine single
values for M and N in each of the three regions: y < −b,
−b < y < b and y > b.

The normal mode solution for a small disturbance are
obtained from the linearized vorticity equation,[

∂

∂ t
+ ū

∂

∂x

]
q′ =−v′

∂ q̄
∂y

, (25)

Since ∂ q̄/∂y is concentrated in two δ -functions at y=±b,
the vorticity perturbation is also concentrated there as δ -
functions. For a given wavenumber k we can write

q′k = Qk

[
eiεb

k δ (y−b)+ eiε−b
k δ (y+b)

]
eikx, (26)
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FIG. 4. Schematic illustration of two isolated vorticity waves and
their induced velocities, when the waves are (a) in phase (εk = 0), and
(b) π/2 out of phase (εk = π/2). The ±q and circular arrows show the
vorticity anomaly, the black thick arrows represent their associated ve-
locities. The red and dashed blue arrows represent the induced velocities
from the upper and lower waves, respectively. The figure illustrates how
M (N ) is maximized when the waves are in phase (π/2 out of phase)
.

where Qk(t) is the amplitude of the vorticity perturbations
(equal by symmetry), and εb

k (t), ε
−b
k (t) are the phases of

the waves at y = b,−b respectively. We can find the cor-
responding streamfunction using the appropriate Green’s

function,

ψ
′
k =−

Qk

2k

[
eiεb

k e−k|y−b|+ eiε−b
k e−k|y+b|

]
eikx. (27)

The resultant velocity anomalies in the first and third
regions are

y <−b :

u′k = iv′k =
Qk

2

[
eiεb

k ek(y−b)+ eiε−b
k ek(y+b)

]
eikx,

y > b :

u′k =−iv′k =−
Qk

2

[
eiεb

k e−k(y−b)+ eiε−b
k e−k(y+b)

]
eikx.

(28)

Substituting the above into (5) it follows that

M, N = 0 for y <−b and y > b. (29)

However, if −b < y < b, then:

u′k =
Qk

2

[
eiεb

k ek(y−b)− eiε−b
k e−k(y+b)

]
eikx, (30)

v′k =−
Qk

2
i
[
eiεb

k ek(y−b)+ eiε−b
k e−k(y+b)

]
eikx, (31)

giving

M =
Q2

k
4

e−2kb cosεk, N =−
Q2

k
4

e−2kb sinεk, (32)

where εk = εb
k − ε

−b
k is the phase difference between the

waves and is independent of time. Noting the correspond-
ing expression for the eddy kinetic energy,

K =
Q2

k
4

e−2kb cosh(2ky), (33)

the eddy tilt and anisotropy are given by

θ =
εk

2
± π

2
, γ = sech(2ky), (34)

with the sign of the phase shift chosen to ensure −π/2 ≤
θ ≤ π/2.

In summary, the Reynolds stresses vanish outside the
shear layer and have constant values within the shear layer,
the latter depending on the phase difference between the
two interacting vorticity waves; this result is generalized in
Appendix A for a continuous vorticity profile and shown
to hold between any two vorticity waves. A corollary is
that the eddy tilt, but not the eddy anisotropy, is constant
within the shear layer.

Fig. 4 shows schematically the velocity field induced
by the pair of vorticity waves for the two cases where they
are (a) in phase (εk = 0) and (b) π/2 out of phase (εk =
+π/2), illustrating that the magnitude of M is greatest and
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N vanishes when the waves are in phase; conversely the
magnitude of N is greatest and M vanishes when the waves
are π/2 out of phase.

Equation (34) provides a direct link between the geo-
metric interpretation of the eddy Roynolds stresses and
classical stability theory. The normal mode growth rate
from linear instability for a counter propagating Rossby
wave pair is given by the expression (Λ/2)e−2kb sinεk
(Heifetz et al. 1999). Thus for a given shear Λ and
wavenumber k, the growth rate depends entirely on the
phase difference between the waves. Growing solutions
are achieved for 0 < εk < π , when the waves are mutu-
ally amplifying each other. The maximum instantaneous
growth is achieved when the phase difference is exactly
π/2. Stable solutions are modes for which −π < εk <
0, where the waves are mutually destroying each other.
Hence, via (34), the eddy ellipse of an unstable solution,
that extracts energy from the mean flow, leans against the
shear (−π/2 < θ < 0), and the eddy ellipse of a stable
normal mode solution, which returns energy to the mean
flow, leans with the shear (0 < θ < π/2), as discussed by
Marshall et al. (2012).

Fig. 3b shows a schematic illustration of the most un-
stable normal mode configuration which is composed of
two phased locked counter propagating Rossby waves at
y =±b, and the corresponding eddy ellipse which is tilted
against the shear. Linear stability analysis reveals that
the asymptotically most unstable mode has normalized
wavenumber 2kmaxb∼= 0.8 with phase difference of εkmax

∼=
0.65π (Heifetz et al. 1999), which gives θ ∼= −0.17π .
The results for this problem are shown if Fig. 3c, d,
where we use the theoretical streamfunction, given by Eq.
(38) for the most unstable mode, to calculate the tilt and
anisotropy. Fig. 3c shows that the eddy ellipse is charac-
terized by a negative constant tilt within the shear layer,
which implies that the eddy is indeed tilted against the
shear. Fig. 3d shows that anisotropy is discontinuous
at the interfaces where the δ -function waves exist. It goes
from zero outside the shear layer to exactly one on the
interfaces, and to a value of sech(2kmaxb) ∼= sech(0.8) ∼=
0.74 close to the interfaces from the inner side. For refer-
ence, a plot of sech(2ky) is also shown in Fig.3d (red thin
line). Inside the shear layer, anisotropy increases to unity
towards the center of the shear layer. This means that in-
side the layer, momentum fluxes are quite anisotropic so
the eddy variance ellipse is elongated along a direction
that has a specific orientation (in this case, such that the
momentum fluxes are negative and tend to decrease the
shear). The expressions for γ and θ are independent of
the amplitude of the normal mode solution and depend
only on the wavenumber k, since by construction a normal
mode solution satisfies cosεk = e−2kb(2kb− 1), achieved
by the phase locking requirement (Heifetz et al. 1999; Ped-
losky 1979).

b. Piecewise linear jet on an f -plane

Following a similar procedure as for the piecewise lin-
ear shear layer, one can find the analytic linear normal
mode solutions for a piecewise linear jet, which consists of
two vorticity strips (e.g., Heifetz et al. 1999). While highly
idealized, this piecewise linear model may provide quali-
tatively useful information about the linear wave develop-
ment and the essence of the instability process in more
realistic oceanic jets.

The basic state (Fig.5a) is given by

ū(y) =


0

Λ(b− y)
Λ(b+ y)

0

y≥ b
0≤ y≤ b
−b≤ y≤ 0

y≤−b

, (35)

q̄(y) =


0
Λ

−Λ

0

y > b
0 < y < b
−b < y < 0

y <−b

. (36)

In this case, the solution consists of three waves, at each of
the interfaces y = 0, ±b, and the vorticity field for a given
wavenumber k can be written as

q′k =[Qb
keiεb

k δ (y−b)+Q0
keiε0

k δ (y)

+Q−b
k eiε−b

k δ (y+b)]eikx.
(37)

For a symmetric normal mode solution we have Qk(t) =
Qb

k = Q−b
k = Q0

k/2, εb
k = ε

−b
k , and we define the phase

difference εk ≡ ε0
k −εb

k = ε0
k −ε

−b
k which is is independent

of time.
The corresponding streamfunction, which can be found

using the appropriate Green’s function, is then

ψ
′
k =−

Qk

2k

[
e−k|y−b|+2eiεk e−k|y|+ e−k|y+b|

]
eikx. (38)

On each side of the jet, we find that the Reynolds
stresses are again independent of y,

M =
Q2

k
2

e−kb
(

cosεk +
e−kb

2

)
, N =±

Q2
k

2
e−kb sinεk,

(39)
and the geometric properties of the eddy ellipse are given
by

tan2θ =∓ sinεk

cosεk +
1
2 e−kb

; (40)

γ =

√
1+ 1

4 e−2kb + e−kb cosεk

1
2 e−kb cosh(2ky)+ e−2ky(cosεk + ekb)

, (41)

where the negative sign in (40) corresponds to the cyclonic
side of the jet (0 < y < b) and the positive sign to the an-
ticyclonic side of the jet (−b < y < 0). The eddy ellipse
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FIG. 5. (a) The piecewise linear jet model of two shear layer with
constant vorticity of opposite signs embedded by two infinite layers of
zero vorticity. At y = 0,±b the mean flow vorticity is discontinuous,
and supports the existence of three waves on each of the interfaces. (b)
Snapshot of relative vorticity (s−1) at some initial time evolution, after
t = 25 days, shows the most unstable normal mode configuration of
three phase locked waves which are tilted against the shear. (c) The eddy
ellipse tilt given by the normal mode solution (blue line) is constant
within each side of the jet, and equals θ ∼= ±0.18π , This is in good
agreement with the snapshot from a numerical simulation (red dashed
line) at day t = 25. (d) The eddy ellipse anisotropy from the analytic
solution (blue) and the numerical simulation (dashed red). At each of
the interfaces y = 0,±1 (here y = y/b is the nondimensional meridional
coordinate) the anisotropy maximizes.
.

tilt is no longer directly proportional to the normal mode
phase difference due to the interaction with the third vor-
ticity wave, which gives an additional 1

2 e−kb term in the
denominator of (40). However, the normal mode phase
difference εk is still a known function of k, found using
the normal mode phase locking requirement.

From linear stability analysis, one can find that the
asymptotically most unstable normal mode for the piece-
wise linear jet (Heifetz et al. 1999) has a normalized
wavenumber 2kmaxb∼= 2.452 and phase difference εkmax

∼=
0.68π , which gives an eddy ellipse tilt of θ ∼= 0.18π in
the cyclonic side of the jet and θ ∼= −0.18π in the anti-
cyclonic side of the jet. Hence, the eddy ellipse is tilted
against the shear in each side of the jet, consistent with the
unstable normal mode solution, fluxing momentum out of
the jet core and into its flanks thus overall acting to de-
crease the shear.

The results for this problem are shown if Fig.5 where
we compare the theoretical prediction for the eddy ellipse
tilt and anisotropy to a fully nonlinear simulation. Details
regarding the numerical model are given in Appendix B.
The non-differentiable piecewise-linear jet in (35) is ap-

proximated by a smooth “tanh” profile whose vorticity is
given by

q0 =
Λ

2

[
2tanh

( y
d

)
− tanh

(
y+b

d

)
− tanh

(
y−b

d

)]
(42)

where Λ is the shear, the interfaces of the layers are located
at y = 0,±b (b ∼= 430km), and δ is a parameter that mea-
sures the relative thickness of the transition regions at the
interfaces. In the limit d→ 0, one recovers the piecewise
linear profile. Here a small value of d = 0.05b is chosen.
The zonal mean flow, absolute vorticity and absolute vor-
ticity gradient of the approximated piecewise linear jet are
shown in Fig. 6, where the black solid line indicates the
initial conditions at day t = 0.

A snapshot of the relative vorticity at early stages of
the simulation, after t = 25 days (Fig.5b), shows that the
vorticity perturbation is localized at the three interfaces
y = 0,±b. The system picks up the most unstable normal
mode solution, which is tilted against the shear in each
layer. Fig. 5c, d shows the zonally averaged eddy ellipse
tilt and anisotropy, respectively, from the numerical sim-
ulation (dashed red line) and the analytic solution (blue
line), calculated using the streamfunction expression for
the most unstable normal mode. The results are in very
good agreement, and show that the eddy tilt is constant and
positive (negative) in the cyclonic (anticyclonic) side of
the jet, with a jump towards±π/2 at y= 0. The anisotropy
structure in each of the layers is similar to that for the sin-
gle shear layer case, though here it maximizes closer to the
edges y = ±b rather than in the middle of the layer. Both
M and N are constant within the layers, and hence only
the perturbation kinetic energy K controls the meridional
structure of the anisotropy γ (which is inversely propor-
tional to K).

The constant tilts remain close to the theoretical value
even at later stages of the simulation, when the waves
merge into vortices (not shown). At much later stages
of the development, however, the linear solution does not
describe the dynamics adequately. In addition, once the
mean vorticity gradient becomes nonzero, the tilt is no
longer constant. This is examined in more detail in the
next section in which we add a background planetary vor-
ticity gradient. Since there are many similarities between
the results obtained on the f plane and β plane, we defer
a more detailed discussion until the latter case.

c. Piecewise linear jet on a β -plane

A more physically relevant case is when a background
planetary vorticity gradient is included. The analytic solu-
tion derived in the previous section is no longer valid since
the eddy ellipse tilt is no longer constant. Nonetheless, the
tilt derived for the f plane (40) gives a good estimate of
the tilt close to the jet flanks at y =±b (though it increases
monotonically towards the jet core, for example as in Fig.
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FIG. 6. (a) Zonal mean velocity (normalized by U0max = 0.04ms−1)
at three different times of the evolution. The initial piecewise linear
jet (day t = 0 , black solid line) weakens and broadens significantly
due to eddies fluxing momentum out of the jet (day t = 48, red), but
later strengthens due to upgradient fluxes (day t = 60, dashed blue).
(b) Zonal mean potential vorticity (normalized by Λ = 9.3×10−8 s−1)
and (c) mean potential vorticity gradient (normalized by b−1Λ = 2.16×
10−13 m−1s−1), for three different times of the evolution. At day t = 0
the potential vorticity has sharp opposite steps, and the potential vor-
ticity gradient changes sign. At day t = 48,60 the potential vorticity
gradient no longer changes sign within the domain. Here y = y/b is the
nondimensional meridional coordinate.

12). In order to capture the meridional dependence of the
tilt, we will study it in detail using ray tracing theory as
discussed in section 4, but first we give a simple qualita-
tive description of the evolution of the flow.

Fig.7 shows snapshots of the potential vorticity field at
different stages of the simulation, where time is normal-
ized to days. Initially (day t = 25) the system behaves
linearly, the interfaces are characterized by a wavy struc-
ture and the perturbation relative vorticity (not shown) is
characterized by three waves at each of the interfaces, with
a wavenumber corresponding to that of the most unstable
mode. At later times (day t = 40), the solution is dom-
inated by vortices (rather then waves), which appear to
be tilted against the shear. The orientation of the vortices
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FIG. 7. Snapshots of the potential vorticity (s−1) at different times
of the evolution (time units is given in days). (a) day t = 25, the most
unstable mode is apparent and the interfaces are characterized by a wavy
structure. (b) day t = 40, the system is no longer in the linear stage
as the waves merged into vortices, however they are still clearly tilted
against the shear. (c) day t = 50, the tilt flips and the vortices are now
tilted with the shear. (d) day t = 95, the vortices break and only one
clear undulating interface exist. Here y = y/b is the nondimensional
meridional coordinate.

changes shortly afterwards (day t = 50), and become tilted
with the shear. Eventually (day t = 95), the vortices break
nonlinearly and the system equilibrates with one undulat-
ing interface.

The zonal mean velocity, absolute vorticity and absolute
vorticity gradient are plotted in Fig. 6 for three different
times of the simulation. The initial flow (day t = 0, black
solid line) is identical to that used in the non-zero beta
case, i.e. the smooth approximation of the piecewise linear
jet. Fig.6a shows the non dimensional zonal speed (nor-
malized by the maximum velocity in the initial jet), Fig.6b
shows the corresponding nondimensional mean potential
vorticity and Fig.6c the mean potential vorticity gradient
(normalized by Λ−1 and bΛ−1, respectively). As can be
seen, the initial mean flow is indeed barotropically unsta-
ble: it satisfies necessary conditions for instability in that
the absolute vorticity gradient ∂ q̄/∂y changes sign within
the domain and is positively correlated with the mean flow.

By day t = 48, the mean flow has become much weaker
due to the transfer of energy from the mean flow to the ed-
dies (not shown). At this instant, the behaviour of the sys-
tem changes dramatically: ∂ q̄/∂y ceases to change sign
within the domain (red solid line in Fig.6b) and so the jet
can no longer support the existence of linearly unstable so-
lutions. At later times (day t = 60, dashed blue line), jet
sharpening can be identified in which the mean flow has
strengthened as a result of up-gradient eddy momentum
fluxes into the core of the jet.
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FIG. 8. Scatter plots of (u′,v′) at different times and meridional loca-
tions (ms−1): at the initial linear stage, day t = 20 (left column), at some
intermediate time, day t = 39, before the eddy tilt had flipped (middle
column) and at day t = 54 after the eddy tilt had flipped (right column).
This is shown for meridional locations of y = b (upper row), y = 0 (mid-
dle row) and y = −b (lower row). The red ellipse in each panel shows
the corresponding calculated ellipse.

This picture is confirmed by calculating the eddy vari-
ance ellipse at different times of the simulation. Fig. 8
shows scatter plots of u′ and v′ at the interfaces y =±b, 0
for three different times, as well as their corresponding el-
lipses (given by Eq. (12)). At day t = 20 (left column), the
anisotropy is close to one near the interfaces, and the eddy
ellipses are indeed very much elongated. In addition, the
tilts are consistent with the linear instability picture, i.e.
positive (negative) tilt in the cyclonic (anticyclonic) side of
the jet. By day t = 39, anisotropy at the flanks y =±b has
become gradually smaller (hence the eddy ellipses appear
more round), though they are still characterized by a tilt
that implies barotropic instability. However, this changes
at later times (day t = 54), when the ellipses at y = ±b
are tilted oppositely, implying that the eddies are fluxing
momentum up-gradient into the jet, with back-scatter of
eddy energy to the mean flow. Note that at y = 0 (the cen-
ter of the jet), we always find γ = 1 and θ = π/2 (in fact,
θ = π/2 or 0 is required by symmetry), i.e., N ∼= 0 and
M > 0, the latter associated with v′2 � u′2 such that the
eddy variance ellipse is elongated in the meridional direc-
tion.

Fig. 9 shows the temporal development and meridional
dependence of the zonally averaged eddy ellipse tilt and
anisotropy, and of the Reynolds stresses M and N. Fig.9a
confirms that during the initial development of the system,
in the time interval t < 48, the eddy tilt shows the signature
of instability with positive tilts the in the cyclonic side of
the jet and negative tilts the in the anticyclonic side of the
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FIG. 9. Temporal evolution and meridional structure of (a) eddy
ellipse tilt (normalized by π), (b) anisotropy, (c) N = v′u′ (m2s−2) and
(d) M = 1
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Here y = y/b is the nondimensional meridional coordinate.

jet. Gradually, the tilt (absolute value) in both sides of the
jet approaches π/2, until at t ≈ 48 all the eddies within
the jet are characterized by θ = π/2. The tilt then flips,
consistent with the onset of stability and the momentum
fluxes being directed up-gradient into the core of the jet.
This holds until approximately day t = 60, after which a
periodic behaviour with time can be identified.

The jet also broadens as a consequence of the instability,
which not only acts to weaken the maximum jet velocity,
but also increase the velocity at the flanks (see also Fig. 6a
for the zonal mean velocity profiles at different times).

Fig. 9b shows the time evolution of the eddy anisotropy.
During the initial time development there are three dis-
tinct regions where anisotropy is close to unity, at each
of the interfaces y = ±b, 0. During the transition period
(t ≈ 48), this picture changes drastically, with anisotropy
being maximized in a broad meridional region around the
jet center (the quasi-circular area of anisotropy close to
unity around t ≈ 48).

Fig. 9c shows the time development of N, which reveals
the expected behaviour in the unstable period (t < 48) with
N positive in the cyclonic side of the jet and negative in
the anticyclonic side of the jet, and the opposite in the fol-
lowing stable period (48 < t < 60). As can be seen, the
sign of the eddy ellipse tilt is controlled by the sign of the
momentum flux N. The time evolution of M (Fig. 9d) is
characterized by large positive values that are maximized
around the jet core in the transition time t ≈ 48, similar
to the structure observed in the eddy anisotropy field. The
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FIG. 10. (a) Direction of relative group velocity θcgR . Arrows show (cosθcgR ,sinθcgR ) and therefore denote only the direction of propagation.
Here y = y/b is the nondimensional meridional coordinate. (b) Schematic illustration of the zonally averaged eddy ellipse at different meridional
locations, for the inward radiating ray, where eddy momentum fluxed are out of the jet and tend to decelerate it, and for the outward radiating ray
(c), where the eddy momentum fluxes are into to jet and act to strengthen it.

large values of positive M together with N ∼= 0 there, im-
ply, as before, v′2� u′2.

d. Relative group velocity and relation to eddy ellipse tilt

A close relationship exists between the relative group
velocity and the eddy ellipse tilt as given by (20) and
sketched in Fig.2. The direction of the relative group ve-
locity from the simulation, estimated from the ratio N/M
as in (19) is plotted in Fig.10a.

During the unstable period (t < 48), the group velocity
is directed inward, towards the jet core. In the initial mo-
ments of the instability (t ≈ 10), the direction is almost in-
dependent of y and cgRy (the meridional component of y) is
negative in the cyclonic side of the jet, consistent with the
positive eddy ellipse tilt, and positive in the anticyclonic
side of the jet, consistent with the negative eddy ellipse tilt.
Hence, momentum is fluxed out of the jet. The direction
of the relative group velocity at t ≈ 10 is approximately
θcgR ≈ ∓0.65π , giving θ ≈±0.175π in the cyclonic and
anticyclonic sides of the jet, respectively, which is close
to the eddy ellipse tilt found in section (b) for the piece-
wise linear jet on an f plane. Shortly afterwards, however,
the direction of relative group velocity is no longer inde-
pendent of y; instead it increases in the cyclonic side and
decreases in the anticyclonic side, with θcgR → 0 at the
jet core. This is consistent with the eddy ellipse turning
towards θ = π/2, i.e. meridional elongation.

A schematic illustration of the inward radiating ray is
shown in Fig.10b, which outlines the averaged eddy el-
lipse as a function of the meridional location, together with
the direction of the relative group velocity, during the un-
stable regime. Note that although the direction of the rel-
ative group velocity changes significantly, it always has a
negative meridional component and positive ellipse tilt on
the cyclonic side of the jet and a positive meridional com-
ponent and negative ellipse tilt on the anticyclonic side of
the jet, hence fluxing momentum out of the jet.

As the jet transitions to the stable regime as the absolute
vorticity gradient ceases to change sign at t ≈ 48, all the
rays become zonal (θcgR = 0, θ = π/2) and the eddy el-
lipse is meridionaly elongated. Immediately thereafter, we
enter the stable regime with outward radiating rays. The
sign of the meridional component of the relative group ve-
locity changes to positive on the cyclonic side of the jet
and negative on the anticyclonic side of the jet. The out-
ward radiating ray is illustrated in Fig.10c. Going away
from the jet core, the ray becomes refracted such that it
becomes more meridional, consistent with negative ellipse
tilt on the cyclonic side of the jet and positive ellipse tilt on
the anticyclonic side of the jet, hence fluxing momentum
up-gradient into the jet.
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e. Comparison with Waterman and Hoskins (2013)

It is interesting to make, at this point, a comparison
between the results obtained here and those obtained by
Waterman and Hoskins (2013) for the case of a zonally
evolving jet in statistically steady state. In Waterman and
Hoskins (2013) an unstable jet is forced at the boundary of
the domain, and the geometric properties of the horizontal
velocity correlation tensor are defined via time mean aver-
aging, rather than zonal averaging. The analysis shows a
similar picture to that described here: eddies tilting against
the shear in the upstream unstable region, and an eddy
tilt consistent with wave radiation observed in the down-
stream stable region. The broad structure of M, N, K and
the corresponding eddy ellipses described in Waterman
and Hoskins (2013) are remarkably similar to those found
here but, importantly, in Waterman and Hoskins (2013) the
structure varies spatially along the flow direction, whereas
here the structure varies temporally through the flow evo-
lution.

There are, however, some interesting differences. First,
in Waterman and Hoskins (2013), the location where the
eddy kinetic energy maximizes occurs downstream of the
location where the potential vorticity gradient ceases to
change sign as a consequence of mean flow advection,
whereas in our case they occur simultaneously in time. At
the point of maximum eddy kinetic energy, Waterman and
Hoskins also find a “bullet of M”, implying meridional
elongation of the eddies there.

Downstream of eddy kinetic energy maximum, Water-
man and Hoskins find that forcing solely from M is re-
sponsible for strengthening and extending the jet, eventu-
ally forcing their time-mean recirculation gyres. In our
case, however, since we consider a zonally symmetric jet,
the zonal mean vorticity forcing from M vanishes, so all
the mean flow forcing arises from N. Moreover, no recir-
culation gyres can develop in our configuration, and the
eddy forcing is instead responsible for the acceleration of
the jet.

4. Ray tracing

For a barotropic jet on a β -plane during the unstable
regime, the eddy ellipse tilt is no longer constant within
the layers (see Fig. 12a), but rather it increases towards
the jet core. This effect is purely due to the continuous po-
tential vorticity gradient, and is intrinsically related to the
wave propagation. If we attempt to solve the propagation
of perturbations away from the interfaces, i.e. inside each
side of the jet, then the dispersion relation is mainly influ-
enced by the β term. In other words, we can ignore the
−∂ 2ū/∂y2 term in the mean potential vorticity gradient
(which in the piecewise linear jet model is exactly zero,
except at the three fronts).

We now make use of ray tracing theory to study the
propagation of waves within the shear layers, under the

influence of the β effect and constant shear. The analytic
solution obtained from the ray equations not only agrees
well with the fully nonlinear simulation, but also helps us
understand the meridional structure of the eddy ellipse tilt.
Let us first briefly review ray tracing theory and the basic
governing equations.

a. Theoretical background

The wave activity propagates at a velocity equal to the
group velocity. In a homogeneous medium, a ray (which
is the path parallel to the group velocity at every point)
will propagate in a straight line. In an inhomogeneous
medium, however, refraction can occur. Ray tracing the-
ory (Whitham 1974; Lighthill 1977, also see Buhler 2009
and Salmon (1998) for overviews) gives the leading or-
der asymptotic description of a slowly varying wavetrain
in a medium that varies slowly compared to the scale of
the waves (through the WKBJ approximation, see Hoskins
and Karoly 1981; Hoskins and Ambrizzi 1993).

For such conditions, the streamfunction can be repre-
sented locally by a plane wave,

ψ(x,y, t)∼ ψ̂eiφ(x,y,t) (43)

with

φ ≈ kx+ ly−ωt, (44)

where

ω(x,y, t) =−∂φ

∂ t
, k(x,y, t) =

∂φ

∂x
, l(x,y, t) =

∂φ

∂y
(45)

are slowly varying. Note that here a distinction is made be-
tween the local value of the angular frequency, ω(x,y, t),
and the dispersion relation, Ω(k, l,x,y, t), with ω(x,y, t) =
Ω(k(x,y, t), l(x,y, t),x,y, t). Cross-differentiation then
leads to the ray equations

dk
dt

=−∂Ω

∂x
,

dl
dt

=−∂Ω

∂y
, (46)

along rays defined by

dx
dt

= cgx =
∂Ω

∂k
,

dy
dt

= cgy =
∂Ω

∂ l
, (47)

where
d
dt

=
∂

∂ t
+ cg ·∇. (48)

These are equivalent to Hamilton’s equations in classical
mechanics. In the absence of explicit time dependence
in Ω(k, l,x,y, t), the analogue of the Hamiltonian, is con-
served along the ray path.
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b. Analytical ray tracing solution

In the case considered here, away from the interfaces
we can approximate the solutions as plane waves on a β

plane, whose dispersion relation is given by

Ω = ūk− βk
k2 + l2 , (49)

where ū = Λ(b− y) on the cyclonic (y > 0) side of the jet,
and ū = Λ(b+ y) on the anticyclonic (y < 0) side of the
jet. It follows that

dk
dt

= 0,
dl
dt

=−k
∂ ū
∂y

=±kΛ; (50)

dx
dt

= ū+
β (k2− l2)

(k2 + l2)2 ,
dy
dt

=
2βkl

(k2 + l2)2 , (51)

where ± refers to y > 0 and y < 0 respectively. Hence, we
find that

k = k0, l = l0∓ kΛt (52)

where k0 and l0 are the initial zonal and meridional
wavenumbers.

The set of ray equations (50) and (51) may be solved
analytically (see Appendix C for a full derivation). The
analytic solution for the eddy ellipse tilt as a function of
the meridional location gives

θ(y) =±1
2

cos−1
(

cos2θ0∓
2Λk2

0
β

(y− y0)

)
. (53)

which allows us to investigate how the ray solution de-
pends on the parameters of the problem, namely β ,k and
the shear Λ. Note that the solution, conveniently, does
not depend on k0, l0, but rather on the initial tilt θ(y0) =
θ0, which can be calculated directly from the Reynolds
stresses (11).

For example, for an outward radiating ray on the cy-
clonic side of the jet, originating at the jet center, we would
have y0 = 0, θ0 = π/2 and ∂ ū/∂y =−Λ, giving

θ(y) =
1
2

cos−1
(

2Λk2

β
y−1

)
. (54)

Note that the solution is only valid for 0 < y ≤ β/Λk2. If
Λ= 0, we find that θ(y)= θ0 = π/2, i.e. the tilt is constant
(indeed, a plane wave propagating on a β plane without
background flow is characterized by constant k0, l0, con-
stant group velocities and therefore straight ray lines). If
β = 0, the solution is not well defined since the ray does
not propagate in the first place (the relative group veloci-
ties are zero). For nonzero β and Λ, going away from the
jet core towards the flank at y = b, the tilt becomes grad-
ually smaller, approaching θ → 0 for y→ β/Λk2. This is
consistent with the results of the previous section for the

outward radiating ray (compare with Fig.10). The analytic
solution also implies that for larger wavenumber, larger
shear, or smaller β , the tilt decreases faster when mov-
ing away from the jet core, which means that the ray is
refracted more.

Since it is the shear which is responsible for the re-
fraction of the rays (through changing the meridional
wavenumber l = l0∓ kΛt), it is clear that a larger shear
will cause larger refraction. The wavenumber dependence
is also clear, since larger wavenumbers corresponds to
smaller waves, which are more easily influenced by the
background shear. Finally, β has a competing effect with
the shear. To better illustrate this, we rewrite the first term
inside the cos−1 in (54) in terms of the nondimensional
β term β ∗ = βb/Λ, which measures the importance of
the planetary vorticity gradient relative to the mean shear,
the normalized nondimensional wave number k̃ = 2kb ,
and the normalized nondimensional meridional coordi-
nate, Y = y/2b, where 2b is the width of the jet. This gives
(2Λk2/β )y = (k̃2/β ?)Y . Hence, if β ?� 1 (which means
that βb is small relative to the shear), the coefficient of Y is
large so the tilt changes rapidly when moving away from
the core, and correspondingly, the ray is significantly re-
fracted. If, on the other hand, β ?� 1 (that is, the shear is
small relative to βb), then the tilt and hence ray path does
not vary significantly.

c. Comparison with numerical results

The validity of the analytic solution is now verified by
comparing it with numerical ray tracing results. We solve
the ray equations (50) and (51) using a forward Euler time
stepping. In Fig. 11 we plot the results of the ray tracing
for different choices of initial zonal wavenumber, k0. For
the inward radiating ray, we initiate the ray just slightly
below and above the upper and lower interfaces y = b, −b
respectively. We specify k0 and find l0 such that the eddy
ellipse tilt (assuming plane wave solutions) is equal to the
value diagnosed at that point from the simulation. That is,
given k0 and y0, we find l0 such that

tan2θ(y0) =
2k0l0

k2
0− l2

0
, (55)

which gives two possible solutions for l0. We choose the
sign such that the ray is directed towards the jet, i.e., l0 < 0
in the cyclonic side of the jet and l0 > 0 in the anticyclonic
side of the jet. The possible values for k0 can be evaluated
using k? ≈ (v′v′/ψ ′ψ ′)1/2. This gives a typical value of
k? ≈ 3.6× 10−6 m−1 or, in normalized units, 2k?b ∼= 3.1
(where b = 430km is the width of the shear layer in each
side of the jet). This is not very far from the theoretical
value for the most unstable mode (2kmaxb∼= 2.452), found
for the case of a piecewise linear jet without β .

In Fig.11a we plot the relative group velocity from
the ray tracing, for rays with varying zonal wavenumbers
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FIG. 11. (a) Direction of relative group velocity from ray tracing results for the inward radiating ray, for varying zonal wavenumbers: k0 =
0.25k?,0.3k?,0.4k?,0.5k?,0.9k?. The leftmost ray corresponds to the smallest wavenumber. The track for k0 = 0.4k? is highlighted in blue for
reference. (b) The highlighted ray with k0 = 0.4k? as a function of time, in the same zonal location. (c) Outward radiating ray, for varying zonal
wavenumbers: k0 = 0.2k?,0.26k?,0.3k?,0.34k?,0.38k?. The leftmost ray corresponds to the largest wavenumber. The track for k0 = 0.3k? is
highlighted in blue for reference. (d) The highlighted ray with k0 = 0.3k? as a function of time, in the same zonal location. Note that in all panels
arrows are unitless and show only the direction of relative group velocity. Here y = y/b is the nondimensional meridional coordinate.

k0 = 0.25k?, 0.3k?, 0.4k?, 0.5k? and 0.9k?, where the left-
most ray corresponds to the smallest wavenumber. The
track for k0 = 0.4k? is highlighted in blue for reference. In
all cases, the initially southwestward pointing ray ends up
pointing eastward pointing, i.e., θcgR tends towards zero
as the rays approach the core of the jet, just as in the re-

sults from the numerical simulation analysed in section 3d.
The meridional component of the relative group velocity,
however, remains negative in the cyclonic side of the jet,
implying a positive eddy ellipse tilt, and vice-versa in the
anticyclonic side of the jet, i.e. the momentum fluxes point
out of the jet. Since the rays are plotted as a function of the
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FIG. 12. Eddy ellipse tilt (normalized by π), for (a) inward radiating
ray (day t = 25) and (b) outward radiating ray (day t = 55). Compared
are actual tilt (red), estimated value (dashes black), ray tracing results
from numerical (blue) and analytic (green stars) solutions. See text for
explanation. Here y= y/b is the nondimensional meridional coordinate.

zonal location x rather than time, in Fig. 11b we also plot
the highlighted ray with k0 = 0.4k? as a function of time,
in the same zonal location (this is equivalent to plotting
the zonal average of the left figure). Note the remarkable
similarity with Fig.10a for the inward radiating ray during
the unstable regime, as well as the schematic illustration
of it in Fig.10b.

For the outward radiating ray, we initiate the ray very
close to the jet core (y = 0) and hence we set l0 = 0
which means that θ = π/2 and θcgR = 0. We choose
the sign of the ray tracing solution such that the ray is
directed outwards from the jet, i.e., l positive on the cy-
clonic side of the jet and negative on the anticyclonic side
of the jet. In Fig. 11c we plot the relative group velocity
from the ray tracing for the outward propagating rays for
zonal wavenumbers k0 = 0.2k?, 0.26k?, 0.3k?, 0.34k? and
0.38k? where the leftmost ray corresponds to the largest
wavenumber. This is consistent with our earlier inspec-
tion of the analytic solution for the outward radiating ray,

where we found that larger wavenumbers will tend to be
refracted more. The track for k0 = 0.3k? is highlighted in
blue for reference. In all cases, θcgR increases in the cy-
clonic side and decreases in the anticyclonic side towards
the jets flanks, similar to that observed in the simulation
for the stable outward radiating regime. The meridional
component of the relative group velocity remains positive,
which implies a negative eddy ellipse tilt in the cyclonic
side of the jet and vice-versa on the anticyclonic side of
the jet, i.e., momentum fluxes into the jet. In Fig. 11d we
plot the highlighted ray with k0 = 0.3k? as a function of
time in the same zonal location. This is again remarkably
similar to Fig.10 for the stable, outward radiating regime,
and to the schematic illustration of the outward radiating
ray in Fig.10c.

Finally, in Fig. 12a, b we compare the eddy ellipse
tilt from the simulation and the ray tracing, for the in-
ward (day t = 25) and outward (day t = 55) radiating
rays, respectively. We use both the actual value for the
tilt (black thick line), calculated from the simulation us-
ing the Reynolds stresses (11), as well as the estimated
value (dashed thin red line) for a plane wave solution
(14) using the estimated meridional and zonal wavenum-
bers l? ≈ (u′u′/ψ ′ψ ′)1/2, k? ≈ (v′v′/ψ ′ψ ′)1/2, respec-
tively, evaluated locally at every y. For the ray tracing
solution, we choose k0 = 0.4k? for the inward radiating
ray and k0 = 0.3k? for the outward radiating ray (the blue
rays in Figs.11a and 11c, respectively). As a check for
our analytic solution for the ray tracing equations, we plot
both the numerical (blue thin line) and the analytic solu-
tion (blue stars) for the eddy ellipse tilt, and these indeed
coincide. As can be seen, the ray tracing agrees well with
the simulation (albeit with the particular choices for the
zonal wavenumbers as described above), and captures cor-
rectly the overall dependence of the tilt with y. The es-
timated tilt value using the estimated local wavenumbers
also gives good agreement with the actual tilt value, which
means that the plane wave assumption works reasonably
well.

5. Summary and discussion

In this manuscript, we have revisited the role of
eddy Reynolds stresses in accelerating and decelerating
barotropic ocean jets. In particular, we have analysed the
eddy Reynolds stresses by exploring the geometric prop-
erties of the eddy stress tensor. This eddy stress tensor can
be described in terms of an eddy variance ellipse, the ge-
ometry of which characterizes the mean eddy shape and
orientation, the direction of eddy activity propagation, and
the eddy forcing of the mean flow.

Idealized linear shear and jet profiles have been anal-
ysed and the theoretical results compared against fully
nonlinear simulations. For flows with zero planetary vor-
ticity gradient, analytic solutions have been obtained and
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provide a direct relationship between the geometric eddy
tilt and the phase difference of a normal mode solution.
This allows a straightforward interpretation in terms of
classical stability theory: the initially unstable jet gives
rise to eddies that are tilted against the shear and extract
energy from the mean flow. Once the jet stabilizes, ed-
dies become tilted with the shear and return their energy
to the mean flow. For a non-zero planetary vorticity gra-
dient, ray-tracing theory has been used to investigate eddy
propagation within the jet. An analytic solution for the
eddy tilt has been obtained for a linear plane Rossby wave
on a constant background shear, the results of which agree
broadly with the eddy tilts diagnosed from a fully nonlin-
ear simulation.

We propose that the geometric framework explored in
this manuscript could be used as a diagnostic tool to under-
stand the role of Reynolds stresses in maintaining and de-
celerating inertial jets in ocean models and observations.
For example, similar ideas have already been applied to
separated western boundary currents such as the Gulf
Stream and Kuroshio (Waterman and Hoskins 2013) and
are currently being applied to the Southern Ocean to elu-
cidate how the zonal jets embedded within the Antarctic
Circumpolar Current vary with longitude (Klocker et al.,
manuscript in preparation). For such problems, it would
be interesting to apply the same ray tracing methods em-
ployed to see if they can provide similar insights for flows
that vary in all three spatial dimensions and time. Recent
theoretical developments (e.g., Waterman and Lilly 2015)
provide further avenues for exploration.

Moreover, we propose that a simple version of the ap-
proach taken here might be employed to develop a simple
parameterization of eddy Reynolds stresses for ocean gen-
eral circulation models that are able to (at least partially)
resolve inertial jets. While it is surely impractical to con-
template solving ray equations in such models, one could
imagine assuming that some of the eddy energy generated
through baroclinic instability is back-scattered to the mean
flow by up-gradient momentum transfer, as found in some
of the idealized jet profiles in this manuscript, and pro-
posed, for example, by Marshall and Adcroft (2010) and
Jansen and Held (2014).

Exploiting the fact that the component of the eddy stress
tensor involving the eddy Reynolds stresses is bounded
by the eddy kinetic energy, assuming the momentum
fluxes are directed up-gradient (say at ∓π/2 relative to
the mean flow), and prescribing a typical value for the
eddy anisotropy, it should be possible to develop a simple
parameterization that is both energetically consistent and
rooted in the underlying geometry of the eddy dynamics.
Even at the simplest level, there remain many questions
to be addressed, for example, should such a parameteri-
zation be applied to the depth-integrated flow? Further-
more it will be necessary to model the formation, propa-
gation and dissipation of eddy kinetic energy, as discussed

by Eden and Greatbatch (2008); Marshall and Adcroft
(2010); Jansen et al. (2015). Despite these challenges, we
believe this approach holds some promise and is worth ex-
ploring further.

APPENDIX A

Generalization of the relations for M and N between
any pair of vorticity waves

The two isolated δ -function vorticity waves can be gen-
eralized to the case where the vorticity field is continu-
ous. Consider a zonal Fourier component of the vorticity
anomaly,

q′ = q̃k(x,y, t)eikx = Q̃k(y, t)ei(kx+εk(y,t)), (A1)

inducing a streamfunction anomaly of the form

ψ
′ =

∫
q̃k(x,y, t)G(y,y′)dy′eikx, (A2)

where the Green’s function is given by

G(y,y′) =− 1
2k

e−k|y−y′|. (A3)

After some algebra, we obtain

M =
∫∫ Q̃k(y′, t)Q̃k(y′′, t)

4
e−k(y′−y′′)

cos(εk(y′′, t)− εk(y′, t))dy′dy′′ (A4a)

N =−
∫∫ Q̃k(y′, t)Q̃k(y′′, t)

4
e−k(y′−y′′)

sin(εk(y′′, t)− εk(y′, t))dy′dy′′ (A4b)

Hence the values of M and N at some location y can be re-
garded as resulting from the continuum of infinite number
of pairs of vorticity waves sandwiching y from below (y′

contributions in the integral) and from above (y′′ contribu-
tions in the integral).

APPENDIX B

Numerical model description

For this study, we use PEQUOD (“Parallel Quasi-
Geostrophic Model”), a finite differences code for solv-
ing quasi-geostrophic equations in a rectangular domain,
configured in a one layer barotropic configuration. The
numerical method implemented in PEQUOD and used
here incorporates the Compact Accurately Boundary Ad-
justing high-Resolution Technique (CABARET) for ad-
vection of relative potential vorticity, combined with in-
tegration of the advection of planetary vorticity. The
CABARET scheme is a potential vorticity-conserving,



J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y 17

second-order (in space and time) accurate method, incor-
porating a non-linear flux limiter. Further details can be
found in Karabasov and Goloviznin (2007) and Karabasov
et al. (2009). The potential vorticity inversion is per-
formed using a fast Poisson solver using a customized ver-
sion of FFTPACK.

The simulations are conducted in a rectangular domain
−L ≤ x ≤ L, −0.5L ≤ y ≤ 0.5L where L = 2500km, with
a no-slip boundary condition applied to the perturbation
from the background profile, at all lateral boundaries. The
model is integrated using a grid of nx = 256 and ny = 129
nodes in the zonal and meridional directions, respectively,
corresponding to 19km resolution and with a time step size
of 1800s. The model is then run for 100 days. The eddies
are defined as deviations from the zonal mean, and the cor-
responding eddy quantities such as eddy kinetic energy,
Reynolds stresses and the eddy variance ellipse parame-
ters calculated accordingly.

We initialize the flow with the zonally symmetric jet
U0 which is barotropically unstable, and perturb it with
a small random noise. The numerical model essentially
solves

Dq
Dt

= ν∇
2q− r(q−qeq) (B1)

where q = ∇2ψ + βy is the absolute vorticity, ν =
100m2 s−1 is a Laplacian viscosity coefficient parame-
ter, and r = 1.5× 10−8 s−1 is the relaxation time scale
towards the background equilibrium flow qeq = q0. We
set U0max = 0.04ms−1, and the width of our jet is 2b =
860km. This corresponds to a linear growth rate of ap-
proximately ∼ 0.24Λ = 2.2× 10−8 s−1, which is the lin-
ear growth rate of the most unstable mode as shown in
Heifetz et al. (1999), where Λ is the shear and equals
Λ = U0max/b ∼= 9.3× 10−8 s−1 in our case. For the case
where the planetary vorticity gradient is nonzero, we use
β = 10−13 m−1 s−1 which corresponds to a non dimen-
sional β (which measures the relative importance of the
planetary vorticity gradient relative to the mean shear) of
β ∗ = βb/Λ∼= 0.46 . For comparison, the non dimensional
β of a typical ocean jet can be evaluated by β ∗ = βW 2/U
where W is the width of the jet, and U is the typical jet
speed. In midlatitudes β ∼ 2× 10−11 m−1 s−1, and for a
typical ocean jet U ∼ 2ms−1 and W ∼ 100km, leading to
β ∗ ∼ 0.1. Our effective β is a bit larger, which means that
our jet is possibly influenced more by the β term, but is of
similar order.

APPENDIX C

Analytic solution for the ray tracing equations

Solving the ray equations (50) and (51) gives

k(t) = k0, l(t) = l0± k0Λt, (C1)

where k0, l0 are the initial wavenumbers.

Next we can use

dy
dt

=
2βkl

(k2 + l2)2 =
2β

k2
0

(
l0
k0
±Λt

)
[

1+
(

l0
k0
±Λt

)2
]2 , (C2)

giving

y(t) = yc∓
β

Λk2
0

1[
1+
(

l0
k0
±Λt

)2
] (C3)

where yc is an integration constant. Similarly, using

dx
dt

=
β (k2− l2)

(k2 + l2)2 , (C4)

we find

x(t) = xc∓
β

Λk2
0

(
l0
k0
±Λt

)
[

1+
(

l0
k0
±Λt

)2
] . (C5)

These are the analytic solutions describing the ray path,
following the relative group velocity.

Now substituting the above expressions in (15), we have

tanθ =
l0
k0
±Λt (C6)

and, substituting into (C3),

y(t)− yc =∓
β

Λk2
0

cos2
θ =∓ β

2Λk2
0
(cos2θ +1) . (C7)

At t = 0, we find:

y0− yc =∓
β

2Λk2
0
(cos2θ0 +1) . (C8)

Hence

y(θ) = y0∓
β

2Λk2
0
(cos2θ − cos2θ0) . (C9)

Finally, solving for θ gives

θ(y) =±1
2

cos−1
(

cos2θ0∓
2Λk2

0
β

(y− y0)

)
, (C10)

which is (53), where ∓2Λk2/β is negative in the cyclonic
side of the jet (y > 0) and positive in the anticyclonic side
of the jet (y < 0). The two possible ± solutions corre-
sponds to the two possible solutions for l.
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