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ABSTRACT: A formal analytic perturbation expansion in the β term is carried out for the Rossby wave solution of the
shallow-water equations in a zonal channel on the β-plane. Apart from a quantization of the meridional wave number, the
presence of zonal boundaries alters, to first order, both the velocity and the geopotential structures of the wave but does
not alter the phase speed of the wave. The ageostrophic component of the velocity field is identical in first order with that
of the unbounded β-plane and is therefore not related to the presence of boundaries. In contrast, the first-order correction
to the geostrophic velocity component is inherently related to the presence of walls as it ensures the vanishing of the total
meridional velocity on the boundaries. This first-order correction to the geostrophic field yields only a third-order correction
in the Rossby phase speed, as can be expected from symmetry considerations. Copyright  2007 Royal Meteorological
Society
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1. Introduction

The fundamental derivation of Rossby wave propagation
on a β-plane was presented originally by Rossby (1939),
and has been quoted since in many textbooks, e.g. Gill
(1982), Pedlosky (1987), Holton (1992), Cushman-Roisin
(1994). In a shallow-water framework, the dispersion
relation of Rossby waves of the form

exp {i(kxx − ωRot)} exp ikyy,

becomes (e.g. Gill, 1982)

ωRo = − βkx

k2
x + k2

y + (1/Rd)2
. (1)

(Here (x, y) denotes the Cartesian zonal and meridional
directions, K = (kx, ky), is the total wave number and
Rd = √

gH/f0 is the Rossby radius of deformation
where g is gravity and H is the averaged thickness of
the layer of fluid. Furthermore, f0 = 2� sin φ0 is the
Coriolis parameter at a central latitude φ0 where � is
the Earth’s angular velocity, β = 2� cos φ0/R is the
latitudinal derivative of the Coriolis frequency, evaluated
at φ0, and R is the radius of the Earth.)
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This elegant result has been derived for an infinite β-
plane. As such, it is inconsistent with the approximation
of the β-plane (where β = df /dy is constant) which
is valid only as long as βy � f0 (i.e. y � f0/β =
tan φ0R). Hence, a more consistent set-up (although not
necessarily realistic) for Rossby wave propagation on the
β-plane is a channel whose zonal walls are located at
y = ±L. Such a channel configuration has been widely
used in basic theoretical models for both baroclinic
and and barotropic instability on a β-plane (e.g. Kuo,
1949, 1973; Charney, 1947; Philips, 1954; Howard and
Drazin, 1964). For rotating annulus experiments which
generate topographic Rossby waves, a radial β-plane
approximation can be assumed where the radial velocity
must vanish on the inner and outer concentric boundaries
(e.g. Solomon et al., 1993; Songnian et al., 2001).

On an unbounded β-plane, the structure of the wave
consists of geostrophic (denoted by the subscript ‘g’)
and ageostrophic (denoted by the subscript ‘a’) velocity
components, where the latter is determined by the former:

ug = g

f0
z × ∇h, (2a)

ua = 1

f0
(iωRoug × z − βyug). (2b)

(z is the vertical unit vector and h denotes the time- and
space-dependent thickness of the fluid.) The presence of
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boundaries requires a straightforward quantization of the
meridional wave number to enable the vanishing of the
geostrophic meridional velocity there, vg(y = ±L) = 0,
i.e.

vg = v̂0ei(kxx−ωRot) cos kyy, (3a)

ky = (2n + 1)

L

π

2
, (3b)

where n is an integer, and only symmetric solutions
around y = 0 are considered. This quantization deter-
mines also the structure of the ageostrophic velocity, (2b),
since (2a) and (3) suggest that

h0 = ĥ0ei(kxx−ωRot) cos kyy, (4a)

ĥ0 = − if0

kxg
v̂0, (4b)

and thus the O(β) ageostrophic meridional velocity,
whose component becomes:

va = −f −1
0 (iωRoug + βyvg)

= −f −1
0

(
ωRo

ky

kx

sin kyy + βy cos kyy

)
v̂0ei(kxx−ωRot),

(5)

does not vanish at the walls. Therefore, the total velocity
u = ug + ua, does not satisfy the boundary conditions

v(y = ±L) = vg(y = ±L) + va(y = ±L) = 0,

which implies that quantization of the meridional wave
number by itself is insufficient for describing Rossby
waves in a zonal channel. Hence, even without baroclinic
or barotropic shear, the basic structure and frequency of
Rossby waves on a β-plane might be altered due to the
presence of zonal boundaries. Thus, in the next section
we suggest a more rigorous perturbation scheme for the
next order correction to the Rossby waves in a channel
that satisfies the no-normal-flow boundary conditions at
the walls of a channel on the β-plane.

2. Rossby waves in a zonal channel on the β-plane

The linearized shallow-water equations on the β-plane
are (e.g. Gill, 1982):

u̇ = (f0 + βy)v − g
∂h

∂x
, (6a)

v̇ = −(f0 + βy)u − g
∂h

∂y
, (6b)

ḣ = −H

(
∂u

∂x
+ ∂v

∂y

)
, (6c)

where the dot implies the partial time-derivative. Stan-
dard quasi-geostrophic approximation of (6) leads then
to (1) and (2) for a wavelike solution.

Denoting the small parameter β̃ = βL/f0 = cot φ0L/R

� 1 (where the last inequality is required by the expan-
sion of f (y) only to first order in y throughout the entire
channel), then a perturbation expansion in β̃ of the eigen-
functions and eigenfrequency of a zonal wave of the form
exp {i(kxx − ωt)}, can be written as( u

h

ω

)
=

( u0

h0

ω0

)
+ β̃

( u1

h1

ω1

)
+ β̃2

( u2

h2

ω2

)
+ · · · (7)

From the following symmetry argument we expect that
the eigenfrequency ω should be odd in β, i.e. ω0 =
ω2 = . . . = 0. The system (6) is invariant to a reflection
(change of sign) of y, v, h, β and ω (i.e. t). Since
the variables y, v(y) and h(y) cannot appear in the
expression for the eigenvalue ω, it must have the same
symmetry to reflection as β, which implies that only odd
powers of β appear. Notwithstanding this argument, we
leave ω0 and ω2 in the derivation below and explicitly
show that they vanish.

Then the zero-order terms of (6) yields −iω0 −f0 ikxg

f0 −iω0 g ∂
∂y

ikx
∂
∂y

−iω0/H

 (
u0

v0

h0

)
=

( 0
0
0

)
, (8)

where two of the eigensolutions are Poincaré plane
waves, whose eigenfrequencies and eigenfunctions are:

ω2
0Po = f 2

0 + gHK2, (9a)

(∇ × u0) · ẑ = f0h0, (9b)

K2 = k2
x + k2

y, (9c)

and the third (zero frequency) solution yields the steady,
geostrophic, solution:

ω0 = 0; u0 =
(

g

f0

)
ẑ × ∇h0. (10a, b)

We focus now on the higher-order corrections (in β̃) to
the geostrophic solution, (10), in the presence of walls.
Taking the zonal derivative of (6b), subtracting it from
the meridional derivative of (6a) and using (6c) we obtain
the potential vorticity equation on the β-plane:

∂

∂t

{
1

f0

(
∂v

∂x
− ∂u

∂y

)
−

(
1 + β̃

y

L

) h

H

}
= −β̃

v

L
, (11)

whose first-order term in β̃, yields ω = β̃ω1 = ωRo,
where ωRo is defined in (1). In order to find the first-
order structure of the bounded Rossby waves, we take
the second-order term, O(β̃2), of (11):

ω2

{
1

f0

(
∂v0

∂x
− ∂u0

∂y

)
− h0

H

}
+ ω1

{
1

f0

(
∂v1

∂x
− ∂u1

∂y

)
− h1

H
− y

L

h0

H

}
+ i

v1

L
= 0.

(12)
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Using (1) and β̃ω1 = ωRo together with (10b) we get
from (12):

ω2

ω1

g

f0
kxh0 + ω1L

{
1

f0

(
ikxv1 − ∂u1

∂y

)
− h1

H
− y

L

h0

H

}
+ iv1 = 0. (13)

Next we wish to find an equation for v1 as a function of
v0 only. Towards this end, we first take the O(β̃) term
of (6a) which together with (10) yields:

h1 = − if0

gkx

v1 +
(

y

L
− i

ky

kx

ω1

f0

)
h0. (14)

The meridional derivative of the O(β̃) term of (6c)
yields:

∂u1

∂y
= i

kx

{
kyω1

h0

H
+ ∂2v1

∂y2

}
. (15)

Now, substituting h1 and ∂u1/∂y back into (13) and
writing h0 = −(if0/gkx)v0 (cf. 10b), we finally obtain
a linear inhomogeneous differential equation for v1(y)

where the inhomogeneous term is proportional to v0(y):(
∂2

∂y2
+ k2

y

)
v1 = 1

L

{
2

f 2
0

gH
y − kxf0

ω2

ω2
1

}
v0. (16)

The zero-order solution for v0(y) that satisfies the bound-
ary conditions at y = ±L is given by (3a) with ky quan-
tized as in (3b). The fact that v0(y) is a solution of
the homogeneous equation associated with (16), together
with the presence of a yv0(y) term in the inhomogeneous
part of (16), implies that the general solution of v1 is

v1 =
{
(ay2 + by + c) cos kyy + (dy2 + ey + f ) sin kyy

}
× v̂0ei(kxx−ωt), (17)

where (a, . . . , f ) are some yet undetermined constants.
The coefficient c maybe absorbed in the zero-order
solution and we therefore set it to zero. Evaluating the
left-hand side of (16) for this form of v1(y) yields(

∂2

∂y2
+ k2

y

)
v1 =

{
4kyy(d cos kyy − a sin kyy)

+ 2(a + kye) cos kyy + 2(d − kyb) sin kyy
}
v̂0ei(kxx−ωt).

(18)

Substituting (18) in the left-hand side of (16) fixes the
coefficients a, b, d, e. Since a = 0, e ∝ ω2. The boundary
conditions v1(y = ±L) = 0 fix e and f . Specifically
e = 0 and therefore ω2 = 0 as expected. We finally obtain

v1 = 1

2Lk2
y

f 2
0

gH

{
y cos kyy + ky(y

2 − L2) sin kyy
}

× v̂0ei(kxx−ωt). (19)

Hence, while for this order of β̃ the boundaries do not
affect the phase speed of the Rossby wave, they do
alter the eigenfunction by adding first-order terms in β̃

to the eigenfunctions. In order to express the first-order
correction (u1, v1, h1) in terms of the zero-order height
(stream function),

h0 = ĥ0 cos (kyy) exp {i(kxx − ωRot)},

we use the O(β̃) terms of (6b), (6c) and (14) to get

u1 = f0

2L

[{
2

Lω1

kxf0
− k−2

y − (y2 − L2)

}
cos kyy

− y

ky

sin kyy

]
ĥ0ei(kxx−ωRot), (20a)

v1 = if0kx

2Lk2
y

{
y cos kyy + ky(y

2 − L2) sin kyy
}

× ĥ0ei(kxx−ωRot), (20b)

h1 =
{

y

L

(
1 + f 2

0

gH

1

2k2
y

)
cos kyy

+
(

f 2
0

gH

y2 − L2

2Lky

+ kyω1

kxf0

)
sin kyy

}
ĥ0ei(kxx−ωRot).

(20c)

We now wish to understand why the modification in the
eigenfunctions of (u, h), induced by the zonal boundary
conditions, is not accompanied by changes in the Rossby
wave frequency, ωRo. Hence, decomposing the first-
order velocity into its geostrophic and ageostrophic
components, i.e.

u1 = u1a + u1g, where u1g = g

f0
z × ∇h1,

then the first-order terms in (6) become

−iω1u0 = f0

(
v1a + y

L
v0

)
, (21a)

iω1v0 = f0

(
u1a + y

L
u0

)
, (21b)

−iω1h0 = −H

(
∂u1a

∂x
+ ∂v1a

∂y

)
. (21c)

Subtracting the geostrophic component (u1g, v1g) from
(20a,b), respectively, we find that

u1a = − g

f 2
0

[
kxω1 cos kyy + f0

L
kyy sin kyy

]
ĥ0ei(kxx−ωRot), (22a)

v1a = − i
g

f 2
0

[
kyω1 sin kyy + f0

L
kxy cos kyy

]
ĥ0ei(kxx−ωRot). (22b)
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Hence u1a = f −1
0 (iωRoug0 × z − βyug0) exactly equals

the first-order ageostrophic component of the unbounded
Rossby waves given in (2b). Since (21) indicates that
only the ageostrophic component of the first-order eigen-
function is involved in the Rossby wave dynamics, the
role of the geostrophic first-order component is ‘only’
to ensure the vanishing of the total meridional velocity
component on the boundaries.

We finally wish to examine how the boundaries alter
the structure of the velocity and the geopotential distri-
bution of the Rossby wave. In Figures 1 and 2, we plot
some of the the velocity and geopotential fields for typ-
ical values of f0 = 10−4s−1, g = 10 ms−2, H = 10 km,
L = 106 m, and (kx, ky) = π/2L(1, 3) which implies
β̃ ≈ 0.165. In Figure 1 the first-order ageostrophic veloc-
ity vector field u1a, as obtained from (2b) or (22), ver-
sus the zero-order geopotential anomaly h0, as obtained
from (4), are plotted. Positive and negative values of h0

are indicated respectively by solid and dashed contours.

The structures of both u1a and h0 remain unchanged for
both the unbounded and bounded β-plane configurations.
Hence, Figure 1 represents the classical wave structure
obtained by Rossby (1939). It is clear both from the plot
and from (5) that the ageostrophic meridional velocity
v1a does not vanish at the channels walls (y = ±L).

While (21c) indicates that the divergence field is
located π/2 out of phase to the west of the negative
zero-order geopotential anomaly h0, it is difficult, how-
ever, to deduce the divergence field of ua, directly from
Figure 1. The reason for this is that u1a is both rota-
tional (its vorticity is mainly opposing the zero order
geostrophic vorticity) and divergent. The largest term in
the expression of the divergence is(

βy

f0

)
ky sin (kyy)̂v0 exp {i(kxx − ωRot)}

that appears in opposite signs in ∂u1a/∂x and ∂v1a/∂y,
cf. (22). Thus, an estimate of the divergence from
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Figure 1. The first-order ageostrophic velocity vector field u1a (arrows) as obtained from (22), and the zero-order geopotential anomaly h0

as obtained from (4) (with positive and negative values indicated by solid and dashed contours respectively). Here and in Figure 2 we take a
channel of meridional width 2L, where L = 106 m. Values of the other variables are given in the text. This figure is available in colour online

at www.interscience.wiley.com/qj
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Figure 2. (a) The first-order velocity vector field u1 (arrows) as obtained from (20a,b), and the zero-order geopotential anomaly h0 as obtained
from (4) (with positive and negative values indicated by solid and dashed contours respectively). (b) The first-order geostrophic velocity vector
field u1g = (g/f0) ẑ × ∇h1 (where h1 is obtained from (20c)), and the zero-order geopotential anomaly h0. This figure is available in colour

online at www.interscience.wiley.com/qj

Figure 1 is obtained from a small residual of two large
terms.

In Figure 2(a) the total first-order velocity u1 is plotted
versus h0. Note how different u1 is from u1a (plotted in
Fig. 1) due to the effect of the walls. Since the zero-
order velocity of the Rossby wave is geostrophic, where
h0 is its stream function (i.e. cyclonic and anticyclonic
flows circulate dashed and solid contours, respectively),
Figure 2(a) indicates that the first-order correction to the
velocity tends to shift the velocity field southwards, as
well as the vorticity field anomaly (not shown) and to
distort the meridional wavelike structure of the zero-order
velocity field. In Figure 2(b) the first-order correction to
the geostrophic velocity field, u1g, is plotted versus h0.
Since cyclonic and anticyclonic flows of u1g circulate,
respectively, negative and positive geopotential anomaly
corrections h1, it is clear from Figure 2(b) that this
correction tends to enhance geopotential anomalies in
the north and reduce them in the south. A comparison
between Figures 1 and 2 reveals that the geostrophic and
the ageostrophic components of the correction fields are
generally opposing each other, not only at the boundaries
but also within the channel interior. As a result, the net
first-correction velocity field, u1, is generally a residue
which is smaller than each of the geostrophic and the
ageostrophic components of the correcting velocity.

3. Concluding remarks

This short note refers to the inconsistency in the concept
of ‘infinite β-plane’ which underlies the original quasi-
geostrophic derivation of Rossby (1939), where on the

one hand a finite meridional extension is required (y �
f0/β), while on the other hand the boundaries are set at
y = ±∞.

The analysis presented here provides the O(β̃) cor-
rection to the geostrophic velocity for Rossby waves in
a zonal channel on the β-plane. The solution satisfies
both the equation and the boundary condition, in contrast
to the classical theory on the unbounded β-plane where
the O(β̃) correction describes only the ageostrophic part
of the velocity field. The ageostrophic first-order correc-
tion to the solution remains unchanged when the infinite
β-plane configuration is bounded by a zonal channel.
Since only the ageostrophic component of the first-order
eigenfunction is involved in the Rossby wave dynamics,
this yields the O(β̃2) correction to the wave phase speed
to vanish identically, a fact that can actually be antici-
pated based on the symmetry properties of the governing
equations. Hence, the geostrophic first-order component
does not take an ‘active role’ in the first-order dynam-
ics of the Rossby waves (it can be shown that it affects
the third-order correction of the phase speed), and in a
sense acts to ensure the vanishing of the total meridional
velocity component on the boundaries.

The main effect of the boundaries on the Rossby wave
is therefore on its meridional structure. The first-order
correction distorts the meridional wave-like structure by
enhancing the geopotential anomaly on the north and
suppressing it on the south of the channel. In contrast,
the velocity field, together with the vorticity field, is
shifted southwards. The obtained meridional asymmetry
(especially the geopotential meridional asymmetry) is
in general agreement with the much more sophisticated
analysis, performed by Panayotova and Swanson (2006),
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of the edge wave asymmetries obtained in a baroclinic
channel. While the latter reveals many other aspects
of asymmetry (their analysis was based on the QG+
framework, established by Muraki et al. (1999), and
included the effect of a zonal jet), our much more modest
analysis suggests that a meridional shift of Rossby
waves on a β-plane is inherent in the presence of zonal
boundaries and should be taken into account when a zonal
channel β-plane model is being implied.
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