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The somewhat counter-intuitive effect of how stratification destabilizes shear flows
and the rationalization of the Miles–Howard stability criterion are re-examined in
what we believe to be the simplest example of action-at-a-distance interaction between
‘buoyancy–vorticity gravity wave kernels’. The set-up consists of an infinite uniform
shear Couette flow in which the Rayleigh–Fjørtoft necessary conditions for shear flow
instability are not satisfied. When two stably stratified density jumps are added, the
flow may however become unstable. At each density jump the perturbation can be
decomposed into two coherent gravity waves propagating horizontally in opposite
directions. We show, in detail, how the instability results from a phase-locking action-
at-a-distance interaction between the four waves (two at each jump) but can as
well be reasonably approximated by the interaction between only the two counter-
propagating waves (one at each jump). From this perspective the nature of the
instability mechanism is similar to that of the barotropic and baroclinic ones. Next
we add a small ambient stratification to examine how the critical-level dynamics alters
our conclusions. We find that a strong vorticity anomaly is generated at the critical
level because of the persistent vertical velocity induction by the interfacial waves
at the jumps. This critical-level anomaly acts in turn at a distance to dampen the
interfacial waves. When the ambient stratification is increased so that the Richardson
number exceeds the value of a quarter, this destructive interaction overwhelms the
constructive interaction between the interfacial waves, and consequently the flow
becomes stable. This effect is manifested when considering the different action-at-a-
distance contributions to the energy flux divergence at the critical level. The interfacial-
wave interaction is found to contribute towards divergence, that is, towards instability,
whereas the critical-level–interfacial-wave interaction contributes towards an energy
flux convergence, that is, towards stability.
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1. Introduction
Recently Harnik et al. (2008) developed a ‘buoyancy–vorticity wave interaction

approach’ to describe the linear dynamics of stably stratified shear flows. The essence
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Figure 1. The evolution of perturbations on a fluid of three density layers at time (a, c) t0
and (b, d ) t0 + �t . An initial vorticity anomaly on an interface between two density layers
(c) induces a far field velocity which perturbs other interface levels (a). These new displacement
(buoyancy) anomalies generate vorticity locally (b) with an action-at-a-distance effect as well
(d ). As a result, a new material perturbation is formed, altering the initial vorticity anomaly.
The large arrows represent the local vertical velocity resulting from the vorticity anomaly,
while the small dashed arrows are the vertical velocity induced by a remote layer.

of their view is that in stably stratified flows the buoyancy acts as a restoring force,
and therefore a horizontal (say zonal) gradient of material displacement generates
vorticity in the meridional direction. By inversion such an initial localized vorticity
anomaly at some particular layer induces a non-local vertical velocity field which
deforms the flow at remote layers, generating vorticity in the far field. The latter,
in turn, induces a far-field velocity which deforms the initially perturbed layer and
consequently alters the initial vorticity anomaly (figure 1). Thus, even in the absence
of a mean vorticity gradient, vorticity inversion and action-at-a-distance are at the
heart of stratified shear flow dynamics.

In barotropic and baroclinic shear flows the basic (potential) vorticity building
blocks which interact at a distance are the counter-propagating Rossby waves
or CRWs (Bretherton 1966; Hoskins, Mcintyre & Robertson 1985). In stratified
shear flows the basic building blocks at each level are mixed gravity–Rossby-wave
kernels that, in the absence of shear curvature, are reduced to two oppositely
propagating internal gravity wave vortex sheets. The fact that at each given level
two building blocks exist (rather than one CRW kernel in the barotropic/baroclinic
case) complicates the dynamics; however this is a direct consequence of the interplay
between the buoyancy and vorticity fields.

The two necessary conditions for modal instability of barotropic and baroclinic
shear flows are straightforwardly rationalized from the CRW perspective. Mutual
amplification between two CRWs are possible only if the mean vorticity gradient
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Figure 2. The mean density and shear profiles (thick black contours and grey contours with
arrows respectively) of the models analysed in this work: (a) two density jumps; (b) a similar,
yet continuous, density profile (see Appendix A); and (c) two density jumps with a small
ambient density gradient.

at their vicinities changes sign – the barotropic Rayleigh (1880) and the baroclinic
Charney & Stern (1962) conditions. The Fjørtoft (1950) condition states that the
mean vorticity gradient should be positively correlated with the mean velocity profile,
as measured with respect to the point of zero vorticity gradient. When this condition
is satisfied the CRWs are able to counter-propagate against the shear, which allows
them to phase lock in their constructive interaction configuration. It is thus easy
to understand why these conditions may be irrelevant to a stratified shear flow.
The mechanism of vorticity anomaly generation by horizontal buoyancy gradients
is independent of the presence of mean vorticity gradients. Furthermore, at every
layer one of the two gravity wave kernels (propagating in opposite directions in
the mean flow frame of reference) is always counter-propagating against the mean
flow. Moreover, the Rayleigh and Fjørtoft conditions result, respectively, from the
global conservation of pseudo-momentum and pseudo-energy (Shepherd 1990). The
equivalent Miles–Howard (M–H; Howard 1961; Miles 1961) necessary condition for
stratified shear flow instability (that the Richardson number should be smaller than
a quarter somewhere within the domain) does not seem to result from an eddy-
associated global conservation law, and therefore it is more challenging to interpret.
One of the main aims of this study is to gain a deeper insight on this condition from
the kernel gravity wave (KGW) interaction standpoint.

The mechanistic picture of the simple barotropic Rayleigh (1880) and the baroclinic
Eady (1949) models, in terms of a two-CRW interaction (Davies & Bishop 1994;
Heifetz et al. 1999), served as a guiding line in much more complex shear flows
(Heifetz et al. 2004), including the nonlinear eddy life cycles on realistic jets (Methven
et al. 2005). Here we follow the same route and examine in detail an equivalent simple
model for a stratified shear flow of two density jumps in the presence of constant
shear (figure 2a). This set-up, examined already by Taylor (1931) and Goldstein
(1931), is even simpler than the model of Holmboe (1962), often invoked to address
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basic questions in stratified shear flows. In some senses, the following analysis is
similar to those done in the previous works on shallow water by Hayashi & Young
(1986), Sakai (1989) and Knessl & Keller (1992). In their models the instability is also
rationalized in terms of action-at-a-distance interaction between localized counter-
propagating waves, when the Rayleigh criterion is not satisfied. After formulating
the problem and briefly reviewing the buoyancy–vorticity KGW interaction approach
(§ 2) we analyse, in detail, the four-KGW interaction of this problem (§ 3). As expected
the instability is dominated by the two counter-propagating kernels; however for long
wavelengths the other two pro-propagating waves, which must be hindered, contribute
as well to the solution.

The common interpretation for the M–H condition stems from the over-reflection
perspective, which is based on a cross-shear wave propagation view. When analysing
the index of refraction of wave propagation across the shear in the Taylor–Goldstein
equation Lindzen & Barker (1985) found that the wave geometry which allows over-
reflection, and hence instability, must include a critical level (hereafter CL) which
separates between the wave propagation and wave evanescence regions. To obtain
an evanescence region at the vicinity of a CL one must have local values of the
Richardson number which are smaller than a quarter (Booker & Bretherton 1967).
Alternatively, Baines & Mitsudera (1994; see also Baines 1998, chapter 4) used a
wave interaction approach, similar to our KGW interaction, but they interpreted
the suppression of the instability in terms of absorption of the two waves at the
CL between them (a cross-shear wave propagation view). Here we interpret this
stabilizing effect of the CL purely in terms of counter-propagating kernel–wave
interaction.

The M–H condition is obviously satisfied in the simple set-up of the two density
jumps, since the Richardson number is concentrated in two delta functions there
(a continuous density profile with two sharp density gradients reveals the same
behaviour, as shown in Appendix A). When increasing slightly the stratification
elsewhere so that the ambient Richardson number increases from zero to a quarter,
the instability is suppressed, in agreement with the M–H condition. Nonetheless, it
seems counter-intuitive that such weak ambient stratification (a normalized value of
one quarter compared with delta functions) will dominate over the dynamics of the
density jumps. In § 4 we analyse the destructive effect of the CL consistently from
the buoyancy–vorticity action-at-a-distance approach. It is shown how the KGWs at
the density jumps generate vorticity at the CL which acts to mask the constructive
interference between the KGWs in the far field. We discuss these results in § 5.

2. KGW formulation for stratified shear flow
We consider an inviscid incompressible Boussinesq two-dimensional flow in the

zonal–vertical (x–z ) plane, with a zonally uniform basic state that varies only with
height and is in hydrostatic balance. For this set-up the linearized momentum and
continuity equations become

Du

Dt
= −Uzw − 1

ρ0

∂p

∂x
, (2.1a)

Dw

Dt
= b − 1

ρ0

∂p

∂z
, (2.1b)
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Figure 3. The gravity wave mechanism for a ζ+ wave in a single-jump configuration. The
wavy contour represents the displacement, while the positive and negative vorticities are shown
with the regular and dashed circles respectively. Notice that the vorticity and the displacement
are in phase as the KGW formulation prescribes for the ‘plus’ kernel. The top wave is for
a random time, t= t0, and the bottom wave is the same wave after a fourth of its period,
t = t0 +T/4. The dashed thick arrows show the buoyancy force on the wave, which is simply the
tendency of the disturbances to level out to equilibrium. The solid filled circles mark the axis
points which rotate in the direction of the circular arrows as a result of the levelling motion.
These points have zero vorticity at t= t0 but generate the most vorticity with time and are
also the points of maximum vertical velocity marked with the thin long arrows. Taking into
consideration all of the processes in the scheme – interface displacement due to the vertical
velocity and the flattening accompanied by generation of new vorticity – accounts for the
rightward phase propagation depicted.

Db

Dt
= −wN2, (2.1c)

∂u

∂x
+

∂w

∂z
= 0, (2.1d )

where U is the mean zonal velocity with the mean shear Uz taken to be constant
in this study. The linearized material derivative is D/Dt = (∂/∂t) + U (∂/∂x); (u, w)
are the perturbation velocities in the x and z directions and p is the perturbation
pressure; ρ0 is a constant reference density; b = −(ρ/ρ0)g is the perturbation buoyancy,
where ρ is the density perturbation and g the gravity. The Brunt–Väisälä frequency
N2 = −(g/ρ0)(dρ/dz) = bz is the mean vertical buoyancy gradient, where ρ is the mean
density profile.

Equation set (2.1) yields, after some algebra, the vorticity equation

Dq

Dt
=

∂b

∂x
= −bz

∂ζ

∂x
, (2.2)

where q = (∂w/∂x) − (∂u/∂z) is (minus) the perturbation component of the vorticity
perpendicular to the zonal–vertical plane and ζ is the vertical displacement.
Equation (2.2) simply states that since the buoyancy is a restoring force its tendency
to flatten the deformed isopycnals back generates vorticity to the right of the
perturbation buoyancy gradient (figure 1; see also figure 3). By inversion, q induces a
far-field vertical velocity that generates vertical displacement which, in turn, generates
vorticity in the far field. To formulate this mathematically we look at a zonal Fourier
component of the form of eikx , with wavenumber k, and introduce its streamfunction
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ψ(k, z) satisfying u = −∂ψ/∂z, w = ikψ and q = −k2ψ + ∂2ψ/∂z2. Then the vertical
velocity at some height z can be expressed in terms of the integrated contribution of
the far field vorticity field,

w(z) =

∫
z′

q(z′)G(z, z′) dz′, (2.3)

where G(z, z′) is the Green function satisfying −k2G + (∂2G/∂z2) = ikδ(z − z′) with
the appropriate boundary conditions. Here we apply the formulation to open flow
whose perturbation vanishes at ±∞ so that G(z, z′) = −(i/2) exp(−k|z − z′|). Writing
then

Dζ

Dt
= w =

∫
z′

q(z′)G(z, z′) dz′ (2.4)

formulates, together with (2.2), the mathematical description for the action in a
distance interaction between the buoyancy b = −bzζ and the vorticity q .

The simplest non-trivial set-up of vorticity–buoyancy interaction is of a single stably
stratified density jump:

ρ = ρ0 − |�ρ|H (z), (2.5)

where H (z) is the Heaviside function and the density interface is at z = 0. The
corresponding mean buoyancy gradient is then

bz = − g

ρ0

dρ

dz
=

g|�ρ|
ρ0

δ(z) = �bδ(z). (2.6)

For finite vertical displacement ζ , (2.2) implies that the vorticity perturbation
should be a delta function as well, q = q̂(x, t)δ(z). Equations (2.2) and (2.4) can then
be written in the matrix form:

∂

∂t

(
q̂

ζ

)
= −ik

⎛⎝U 0 �b

1

2k
U 0

⎞⎠( q̂

ζ

)
, (2.7)

where U 0 is the mean velocity at z = 0. The solution of this simple eigenproblem is
a superposition of the two Boussinesq internal gravity waves with the intrinsic phase
speeds:

c± = ±

√
�b

2k
≡ ±cgr , (2.8)(

q̂

ζ

)
= ζ+

0

(
2kcgr

1

)
exp[−ik(cgr + U 0)t] + ζ −

0

(−2kcgr

1

)
exp[−ik(cgr + U 0)t], (2.9)

where ζ
±
0 are the vertical displacements at z =0 of the two modes. Hence, the vorticity

and the vertical displacement of the eastward-propagating (westward-propagating)
wave, in the mean flow frame of reference, are in phase (anti-phase), ensuring coherent
propagation of the buoyancy and the vorticity fields (figure 3). Next, we use these
two waves as KGW building blocks, to examine the interaction between two density
jumps (see Harnik et al. 2008 for more details on the KGW formulation).

3. Two-density-jump instability
3.1. Formulation

We consider the density profile of two density jumps located at z = ±h (figure 2a):

ρ = ρ0 + |�ρ|[1 − H (z − h) − H (z + h)]. (3.1)
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Normalizing the length by h and the time by 1/Uz, (2.2) and (2.4) become(
∂

∂t
+ ikz

)
q = −ikRiζ, (3.2a)

(
∂

∂t
+ ikz

)
ζ = − i

2

∫
z′

q(z′) exp(−k|z − z′|) dz′, (3.2b)

where all variables are non-dimensionalized and Ri = bz/(Uz)
2 is the Richardson

number. For the two-density-jump profile

Ri =
�b

h(Uz)2
[δ(z − 1) + δ(z + 1)] ≡ R̂i[δ(z − 1) + δ(z + 1)]. (3.3)

The M–H condition, although commonly related to a continuously stratified
flow, is obviously satisfied in this simple set-up. Taking the normalized M–H
integral (cf. (4.3.3) in Baines 1998) the necessary condition to obtain non-zero

imaginary phase speed requires that
∫

(|φz|2 + k2|φ|2) dz + R̂i[(|φ|2/|z − c|2)z=−1 +
(|φ|2/|z − c|2)z=1] = (1/4)

∫
(|φ|2/|z − c|2) dz, where φ =ψ/

√
(z − c). Since all the terms

on the two sides of the equation are positive definite the condition can be satisfied.
Nonetheless, for completeness, we analyse (in Appendix A) a continuous smooth
density profile (figure 2b) whose limit converges to (3.1). Denoting hereafter level
z = 1 with the subscript 1 and z = −1 with 2 so that

q = q̂1δ(z − 1) + q̂2δ(z + 1), (3.4)

we write (3.2a,b) explicitly for the two jumps:(
∂

∂t
+ ik

)
q̂1 = −ikR̂iζ1, (3.5a)(

∂

∂t
+ ik

)
ζ1 = − i

2
(q̂1 + q̂2 e−2k), (3.5b)(

∂

∂t
− ik

)
q̂2 = −ikR̂iζ2, (3.5c)(

∂

∂t
− ik

)
ζ2 = − i

2
(q̂1 e−2k + q̂2). (3.5d )

And the intrinsic gravity wave speed in (2.8) is normalized to cgr =

√
R̂i/2k. By

definition the two KGWs at each interface must preserve their eigenstructure of (2.9):

q̂
±
1/2 = ±

√
2kR̂iζ

±
1/2, (3.6)

where, as before, the superscript ± indicates the sign of the KGW-associated intrinsic
propagation speed. Since the vorticity and the displacement at each interface are
superpositions of the two KGWs (q̂1/2 = q̂+

1/2 + q̂−
1/2, ζ1/2 = ζ+

1/2 + ζ −
1/2), (3.5a–d ) can be

rearranged to be written as an equation set for the KGW displacements:[
∂

∂t
+ ik(cgr + 1)

]
ζ+
1 = −iσ

(
ζ+
2 − ζ −

2

)
, (3.7a)

[
∂

∂t
+ ik(−cgr + 1)

]
ζ −
1 = −iσ

(
ζ+
2 − ζ −

2

)
, (3.7b)
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∂

∂t
+ ik(cgr − 1)

]
ζ+
2 = −iσ

(
ζ+
1 − ζ −

1

)
, (3.7c)

[
∂

∂t
+ ik(−cgr − 1)

]
ζ −
2 = −iσ

(
ζ+
1 − ζ −

1

)
. (3.7d )

Equation set (3.7a–d ) is straightforward to interpret. The mean normalized velocity at
the interfaces is U (±1) = ±1; hence in the absence of interaction with the KGWs of the
opposed interface (when the right-hand side are zeros), ζ+

1 and ζ −
2 tend to propagate in

the direction of the mean flow whereas ζ −
1 and ζ+

2 propagate counter to it. Each KGW,
by construction, does not interact with the other KGW of the same interface, but with

the two KGWs of the opposed one. The interaction coefficient σ ≡ (e−2k/4)
√

2kR̂i,
results from the vorticity–displacement production relation (3.6) and the exponential
evanescence of the induced vertical velocity as represented by the Green function,
where the additional division by the factor 2 results from the equipartition of the
vorticity at each interface between the two KGWs. The −i prefix on the right-hand
side indicates that the vertical velocity is induced a quarter wavelength to the right
of the vorticity, recalling that for ζ+ the vorticity and the displacement are in phase,
whereas for ζ − they are anti-phased (hence the minus sign before ζ −; (3.6)).

3.2. Analysis and results

The eigenvalue solution of (3.7), for normal modes of the form of exp[ik(x − ct)],
yields the dispersion relation

c = ±

√
c2
gr + 1 ± 2cgr

√
1 +
(σ

k

)2

. (3.8)

Without interaction (σ =0) the solution is reduced to the four uncoupled modes:

c = ± (cgr ± 1). For σ �= 0 instability is obtained when 2cgr

√
1 + (σ/k)2 >c2

gr + 1.
The unstable modes are stationary, cr = 0, experiencing a growth rate of kci = k ·√

−(c2
gr + 1) + 2cgr

√
1 + (σ/k)2. Figure 4(a) shows the growth rate as a function of

(k, R̂i). As can be seen a global maximum for the growth rate is obtained when

(k, R̂i) ≈ (0.5, 1). The wavenumber range of instability shrinks and shifts to higher

wavenumbers as R̂i increases. For R̂i smaller than unity only a short-wave cutoff

exists, whereas for R̂i larger than unity both short- and long-wave cutoffs exist. The
unstable and stable modes come in conjugate pairs. The growth rate of these modes
as well as the real phase speed of the four modes are shown for representative values

of R̂i in figures 5(a) and 5(b).
The amplitude ratios and the phase differences between the four KGWs for the

unstable modes (and their continuation to the neutral regions at the two sides of
the cutoffs) are shown in figures 5(c) and 5(d ) (normalized with respect to ζ −

1 ). In the
unstable region the two counter-propagating waves (ζ −

1 , ζ+
2 ) have equal amplitudes.

The pro-propagating waves (ζ+
1 , ζ −

2 ) are also of equal amplitude, smaller by a factor
χ (figure 4b). Each counter-propagating wave is aligned in anti-phase (in both
vorticity and displacement) with the pro-propagating wave of the opposed level
so that (ζ+

1 , ζ −
2 ) = −χ(ζ+

2 , ζ −
1 ). The two counter-propagating waves are in phase in

their displacement (and anti-phased in their vorticity) at the long-wave cutoffand
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Figure 6. The four-KGW configuration of the most unstable normal mode of the
two-density-jump problem (for which �ε = π/2). The displacement of the counter- and
pro-propagating waves are denoted by the solid and dashed wavy lines respectively, and the
corresponding kernel vertical velocity is denoted by the solid and dashed arrows respectively.
Notice that both the counter- and pro-propagating pairs are mutually amplifying, and each
pair hinders the other pair.

anti-phased in their displacement (and in phase in their vorticity) at the short-wave
cutoff. In between, the upper counter-propagating wave displacement (vorticity) is
shifted eastward (westward) with respect to the lower counter-propagating one. A
schematic of the KGW set-up for the case in which the counter-propagating waves
are in quadrature is drawn in figure 6. Next we wish to interpret these results from
the KGW interaction point of view.

The first question that might arise is why the pro-propagating kernels are present at
all in the growth mechanism. For comparison, in the analogous barotropic Rayleigh
(1880) and baroclinic Eady (1949) models, only CRWs exist, and they are phase
locked to yield unstable modes, similar to the counter-propagating waves (ζ −

1 , ζ+
2 )

of our set-up. The reason lies in the fundamentally different action-at-a-distance
mechanism between these problems. In the barotropic/baroclinic cases the induced
velocity field generates vorticity at a distance by advecting the local mean (potential)
vorticity gradient so that the displacement and the vorticity anomalies are either in
phase or anti-phased according to the sign of the mean vorticity gradient. In our
problem, the induced velocity deforms the buoyancy in the far field, while vorticity is
only subsequently induced in quadrature, by the new horizontal buoyancy gradients.
This initial pure buoyancy anomaly necessarily excites both KGWs. Furthermore, in
order to get growth the buoyancy (or displacement) field cannot be fully in phase
with or anti-phase to the vorticity field; hence they cannot be described solely by the
counter-propagating kernel. To see this mathematically we write the displacement and
vorticity in terms of their amplitudes and phases (ζ =Z eiθ , q = Q eiα) and substitute
a modal solution in the vorticity generation equation (2.2). Then by taking the ratio
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between the imaginary and real parts of (2.2) we obtain

tan (θ − α) =
ci

cr − U
. (3.9)

In our set-up tan (θ − α) = ∓ci for levels z = ±1 so that (everywhere outside the CL)
ci �= 0 is obtained only when (θ − α) �= (0, π). Since the pro-propagating waves must
exist to obtain growth, but must also be phase locked, they must be hindered by the
counter-propagating waves of the opposed level. The induced velocity by the latter on
the former should be strong enough (hence the amplitude ratio χ) and of the opposite
sign (hence the anti-phased alignment) to overcome the pro-propagation tendency of
the former (figure 6). Since for the unstable modes (ζ+

1 , ζ −
2 ) = −χ(ζ+

2 , ζ −
1 ), the four

KGW equations (3.7) can be reduced (without approximation) into two equations for
the two counter-propagating KGWs:[

∂

∂t
+ ik(−c̃gr + 1)

]
ζ −
1 = −iσ ζ+

2 , (3.10a)

[
∂

∂t
+ ik(c̃gr − 1)

]
ζ+
2 = iσ ζ −

1 , (3.10b)

where c̃gr = cgr − χ(σ/k) is the counter-propagating KGW intrinsic phase speed,
reduced by the hindering effect of the anti-phased pro-propagating wave at the
opposed boundary. Writing ζ −

1 = Z−
1 eiε−

1 , ζ+
2 =Z+

2 eiε+
2 and substituting it in (3.10a,b),

the real parts yield the instantaneous KGW growth rates,

Ż−
1

Z−
1

=
Z+

2

Z−
1

σ sin (�ε),
Ż+

2

Z+
2

=
Z−

1

Z+
2

σ sin (�ε), (3.11a,b)

while the imaginary parts yield the instantaneous KGW phase speeds,

c−
1 = − ε̇−

1

k
= (1 − c̃gr ) +

Z+
2

Z−
1

σ

k
cos�ε, c+

2 = − ε̇+
2

k
= −(1 − c̃gr ) − Z−

1

Z+
2

σ

k
cos �ε,

(3.12a,b)

where �ε = ε+
2 −ε−

1 . For modal growth rate, kci = Ż−
1 /Z−

1 = Ż+
2 /Z+

2 ; thus it is obvious
that the KGWs have equal amplitudes so that kci = σ sin (�ε). In order for the waves
to be phase locked, cr = c−

1 = c+
2 , the waves should be stationary with phase locking

�ε, satisfying cos (�ε) = (c̃gr − 1)/(σ/k). Thus, the KGW dynamics is just like the two
CRWs in barotropic and baroclinic instabilities, except that the intrinsic phase speed
is proportional to the square root of the wavelength (rather than the wavelength itself
for the Rossby kernels) and is somewhat hindered by an opposed anti-phased kernel.

For small wavenumbers the single counter-propagation phase speed is large (2.8),
and the KGWs need to be anti-phased in order to hinder each other’s counter-
propagation (figure 4c). Furthermore, the opposed pro-propagating kernel amplitude
is also large (figure 4b) to amplify the hindering. Since the counter-propagation speed

is also proportional to R̂i, as it increases, such hindering can maintain phase locking

only for larger wavenumbers; hence a long-wave cutoff is established for R̂i > 1
(figure 4a). As the wavenumber slightly increases, the additional hindering effect
by the opposed anti-phased kernel allows the KGWs to be in a hindering–growing
configuration (0 < �ε < π/2). Ignoring this effect (by taking χ = 0) prevents modal
growth in this range (figure 5a). For larger wavenumbers the amount of hindering
required for phase locking is reduced, and the KGWs can be shifted towards a
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more amplifying configuration, which becomes optimal when �ε = π/2 (figure 6).
This occurs for wavenumbers and Richardson numbers that satisfy c̃gr = 1, which
is when each KGW (with its anti-phased opposed one) counter-propagates with a
speed which balances exactly the mean flow speed. For even larger wavenumbers the
counter-propagation speed is overwhelmed by the mean flow, and the KGWs need
to be in a helping–growing configuration (π/2 < �ε < π). In this range the hindering
effect of the pro-propagating waves interferes with the phase locking, and therefore χ

decreases (figure 4b). Eventually the wavenumber becomes too large for effective phase
locking (because both the counter-propagation speed and the interaction coefficient
σ decrease with the wavenumber), and a short-wave cutoff is established. Increasing
the Richardson number increases the counter-propagation speed and hence shifts
both the long- and short-wave cutoffs to higher wavenumbers but also shrinks the
transition between them.

Summarizing this part of the analysis, we examine in detail the action-at-a-distance
paradigm of Baines & Mitsudera (1994) to stratified shear flow instability, in the
simplest model we could construct. This model shares many similarities with the
baroclinic Eady (1949) and barotropic Rayleigh (1880) models, but is fundamentally
different in the sense that it does not satisfy the Rayleigh–Fjørtoft conditions for
instability and that each interface supports two edge waves rather than one. Although
the dynamics is more complex, the essence of the instability is the same – it is
dominated by the phase-locked constructive interaction between the two counter-
propagating interfacial waves (IWs).

These three models, however, do not contain a CL (they do contain a steering level
in the middle, where U = cr , but the vorticity perturbation is zero there). Therefore,
in the next section we proceed by adding a small ambient stratification to the two
density jumps (figure 3c), to examine the effect of the CL on the instability from the
vorticity–buoyancy action-at-a-distance perspective.

4. Suppression of instability by ambient stratification
4.1. Results

We consider the density profile of figure 3(c):

ρ = ρ0 + |�ρ|[1 − H (z − h) − H (z + h)] − z|ρz|amb
(4.1)

(|ρz|amb
= constant), where the ambient Richardson number (outside the jumps)

satisfies 0 < Riamb = −[(g/ρ0)|ρz|amb]/(Uz)
2 < 1/4 so that

Ri(z) = Riamb + R̂i[δ(z − 1) + δ(z + 1)]. (4.2)

We find the normal-mode solutions of this set-up both by numerical discretization
of (2.2) and (2.4) (Appendix B) and by converting them to the Taylor–Goldstein
equation and solving it analytically (Appendix C). The agreement between the two

methods of solution is excellent (the two solutions for R̂i = 2, Riamb = 0.2 and k = 1.07
differ at most by 0.46 %). As in the previous set-up four discrete normal modes exist,
for each zonal wavenumber, where the growing and decaying modes (if they exist)
come in conjugate pairs.

Figure 7 shows the dispersion relation for the growing and decaying modes as
Riamb increases gradually from 0 to 1/4. We choose to show the case in which

R̂i = 2, since in the absence of ambient stratification the dispersion relation includes
a distinct long-wave cutoff, and the role of the pro-propagating IWs is negligible (cf.
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Figure 7. The growth rate (kci) as a function of wavenumber (k ) for different values of
Riamb given in the figure legend, with the outermost curve corresponding to Riamb = 0 and the
innermost curve to Riamb = 0.249. For all wavenumbers in the unstable zone there are two
complex-conjugate phase speeds c = ± ici . The real part of the phase speed for the unstable
modes is zero in all cases.

the topmost row of figure 5; the pro-propagating IWs were found to be unessential
to the dynamics with ambient stratification). As Riamb increases the growth rate
decreases, and the spectrum emitting the instability shrinks and is shifted towards
higher wavenumbers. As expected from the M–H criterion the instability ceases when
the Richardson number becomes larger than a quarter everywhere in the flow. In
figure 8 we show the structure of the amplitudes and phases of the vorticity and the
vertical displacements, for a specific wavenumber (k = 1.07) and for various values of
Riamb. The IWs hardly change with Riamb; the vorticity IWs remain tilted against the
shear, by approximately a quarter of wavelength, and the displacement of the lower
(upper) IW is almost in phase (anti-phase) with its vorticity. Although the ambient
stratification is constant everywhere in the domain the vorticity and the displacement
are concentrated at the critical layer whose width decreases as the value of Riamb

approaches a quarter (e.g. figure 8).

4.2. Interfacial-wave–critical-layer far-field interaction

This structure, which is drawn for Riamb = 0.249 in figure 9, can be understood from
the vorticity–buoyancy view when considering first the vertical displacement profile
in the absence of ambient stratification. Although the vertical velocity resulting
from the combined induction of the two IWs is minimized at the CL (because
of the evanescence of the Green function), the vertical displacement is maximized
there. This is because the fluid at the CL is phase locked with the two IWs,
and therefore its vertical displacement is amplified persistently ((2.4) yields that
ζ = w/[ik(U − cr ) + kci] = w/kci at the CL) and tends to infinity as ci goes to zero.
In the presence of ambient stratification the vertical displacement at the CL deforms
the isopycnal surfaces and hence generates strong vorticity a quarter wavelength
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Figure 8. (a,b) Amplitude and (c, d ) phase of (a, c) the vorticity and (b, d ) the displacement

as functions of height for parameter values R̂i = 2 and k = 1.07 and varying Riamb shown in
the figure legend. Values are normalized so that the maximum amplitude is 1 and the vorticity
phase is 0 at z = 1. Note that all q amplitude curves (a) lie on top of each other at the jumps,
and for Riamb = 0 the vorticity is zero except at the jumps; thus its phase is marked as dots in
(c). In the critical layer, when Riamb > 0, the amplitudes are increased, and a rapid transition
of the phase occurs. Away from the critical layer, q and ζ are approximately in two regions
of equal phase.

to its right in a standing-wave-like fashion (q = i(Riamb/ci)ζ ; (2.2) and figure 9; cf.
Appendix B in Harnik et al. 2008).

Adding a small background stratification thus adds a third active region to the two-
jump dynamics. It would simplify things, conceptually, to represent the CL region
as a single standing-wave kernel with a structure at the exact centre of the CL
(q and ζ in quadrature in both space and time; cf. Appendix B of Harnik et al.
2008). Such a vorticity kernel induces an evanescent untilted vertical velocity field.
This representation is valid, since the far-field vertical velocity induced by the entire
CL (the region in which q and ζ are strongly phase tilted with height) is indeed
evanescent and almost untilted (a tilt of 0.012π for Riamb = 0.225 and less than
0.0005π for Riamb = 0.249). The reason that the CL region affects the flow like a
single kernel at its centre is partly due to the strong vorticity amplitude decay away
from the CL centre and partly due to the strong vorticity phase tilting which causes
the top and bottom parts of the CL to largely cancel each other’s influence at a
distance.

Looking at a schematic illustration of a three-kernel representation of the
configuration of figure 9, drawn in figure 10, it is clear that if the induced vertical
velocity field from the two kernels is shifted by a quarter wavelength, symmetry yields
that the maximum induced displacement at the CL should be one eighth wavelength in
between the two IWs. Then the vorticity anomaly at the CL, generated in quadrature
in response to the induced displacement, induces a vertical velocity anomaly, which
tends to oppose the existing displacement anomaly at all levels. Since this CL-induced
vertical velocity is not exactly in anti-phase with the IW displacements, it also tends
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Figure 9. The x–z contour plots of the vorticity and the displacement for k = 1.07 and
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the negative values and the darker shades are the positive values. The normalized q contour
interval is 0.2, and the normalized ζ values are marked on the plot. The CL is enlarged and
overlain on the centre so that the height axis is discontinuous at z = ± 0.5. The length is given
in units of wavelength.

to shift the IW in the direction of the shear (a hindering effect). Moreover, the
CL-induced displacement anomaly also acts to decrease its own amplitude growth in
a standing-wave-like fashion.

As Riamb approaches a quarter, the vorticity at the CL approaches infinity, and its
induced destructive velocity completely masks the constructive interference between
the two IW vorticity delta functions. This argument is somewhat circular for normal
modes, since as the growth rate goes to zero, (2.2) indicates that the CL vorticity goes
to infinity; therefore it is difficult to differ between cause and effect. For this reason
we simulate the evolution towards the normal modes from various initial conditions,
including beginning from the phase-locked IWs with zero ambient vorticity. The
simulations (not shown here) indicate indeed that the CL is the region which is
persistently amplified by the IWs, and as the CL vorticity grows it acts to dampen the
IWs. The unstable mode which last survives is that for which the IWs are in the optimal
constructive interference phase of π/2 (which is of wavenumber k = 1.07, shown in
figures 8–10). As Riamb crosses a quarter all modes become neutral. This schematic
picture is slightly altered by the integrated effect of the non-zero vorticity kernels
outside the CL and the interfaces. These kernels are in phase with their adjacent
interfaces (figure 8) and therefore act to help them to counter-propagate against the
shear. This effect overwhelms the opposed hindering by the CL, and consequently
the unstable regime is shifted towards the helping regime in the dispersion relation
as Riamb increases (figure 7). The other difference is that when Riamb < 1/4 the CL is
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Figure 10. The three-wave mechanism for the most unstable wavenumber resulting in a
π/2 phase difference between the interfacial kernels’ displacement. The wavy lines illustrate
the displacement, and the circles show the vorticity with the anomaly sign marked and the
negative circles dashed. The large arrows represent the self-vertical velocity generated by the
local wave, while the small dashed or dotted arrows are the induced vertical velocity generated
by the two other levels. The IWs (z = ±1) are pure ζ − and ζ+ kernels respectively as in the
two-density-jump model. The CL wave (z = 0) consists of q and ζ anomalies which are π/2
out of phase and a displacement phase difference of π/4 from the IWs so that it is situated in
equal spacing from both.

actually a layer with a finite width (figure 9). Nonetheless its overall effect remains
destructive.

4.3. Energy and momentum flux consideration

The destructive role of the CL seems surprising in light of the fact that this is a
place where energy is extracted from the mean flow to the perturbation (Lindzen &
Tung 1978). For the barotropic/baroclinic case Harnik & Heifetz (2007) showed that
the CRW kernels, adjacent to the CL, are governed by the action-at-a-distance from
remote dominating kernels. Next we show that this is also the case for the stably
stratified shear set-up. Lindzen & Tung (1978) and Lindzen & Barker (1985) looked
at the energy flux carried by propagating waves (across the shear) at the vicinity of
the CL and found that energy flux diverges at the CL when over-reflection occurs.
To inspect the energy flux they applied the first theorem of Eliassen & Palm (1960)
(strictly valid for steady flow, but has been shown to be a good approximation for
small growth rate instability as well):

pw = −ρ0(U − c)uw (4.3)

(where the bar denotes zonal averaging). For positive shear, energy flux divergence
(pw > 0 above the CL and pw < 0 below it) is obtained when the momentum flux
uw < 0 at both its sides (and thus the energy growth −uwUz is positive there). This
view of the CL and energy extraction from the mean flow arises naturally in the over-
reflection view of things. Here we view this energy flux divergence at the CL through
our kernel action-at-a-distance approach to gain further insight into the relative
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Figure 11. The momentum flux (uw) induced by two vorticity anomalies: (a) tilted against
the shear and (b) tilted with the shear with a phase difference of π/2. The thick arrows are the
local velocities (vertical and horizontal), while the dotted and dashed arrows are the induced
velocities by the upper and lower (respectively) perturbations. In between the two anomalies
uw is negative for (a) and positive for (b). Notice that for both (a) and (b), above the top
anomaly and below the bottom one the two contributions to uw are of equal magnitude and
opposite signs, resulting in a zero total momentum flux.

contribution of the CL and IWs. Towards this end we first develop an understanding
of the kernel action-at-a-distance contribution to the momentum flux uw.

By definition, the zonal and vertical velocities induced by a single kernel are in
quadrature and therefore do not contribute to the momentum flux uw. Therefore,
from the KGW perspective, the momentum flux is inherently non-local, as it results
from the interaction between different kernels. If we denote the contribution to the
momentum flux at some level z, from two kernels located at z′ and z′′, as [uw(z′, z′′)]z,
then if z is sandwiched between the kernels, i.e. z′′ > z > z′, figure 11 indicates that the
momentum flux is negative (positive) when the kernels’ vorticity is tilted westward
(eastward) with height. Furthermore, the kernels’ contributions are even in the sense
that [uw(z′, z′′)]z = [u(z′)w(z′′)]z + [u(z′′)w(z′)]z = 2[u(z′)w(z′′)]z. Moreover [uw(z′, z′′)]
is independent of height everywhere between the two kernels (if z, for instance, is closer
to the upper kernel, from below the weaker contribution from the lower kernel is
compensated by the stronger contribution from the upper one). In contrast, outside the
kernels (z > z′′ or z < z′) the contribution vanishes since [u(z′)w(z′′)]z = −[u(z′′)w(z′)]z.

Applying the cases of figure 11 to our problem, as presented for example in
figures 8–10, it is clear that the interaction between the two IWs (tilted westward,
against the shear) yields a negative contribution to uw in between them and hence a
positive contribution to the energy growth. Thus, the mutual amplification between
the two kernels can also be expressed by a positive contribution to the energy flux
divergence at the CL. The kernel at the CL is tilted with the shear relative to both
IWs, and therefore the interaction between the IWs and the CL contributes towards
positive uw and hence towards energy flux convergence at the CL. Furthermore,
since the vorticity at the CL (having a small finite width) is tilted with the shear it
contributes towards a positive momentum flux.
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In Appendix D we derive the overall integrated expression for the momentum flux,
evaluated at height z, in terms of kernels’ interaction (at height z′ and z′′) to be

−[uw]z =
1

4

∫ z

z′=−∞

∫ ∞

z′′=z

Q(z′)Q(z′′) sin[α(z′′) − α(z′)] exp[−k(z′′ − z′)] dz′ dz′′. (4.4)

As a quantitative example we compute uw, for the solution k = 1.07 and Riamb =0.24,
at z = 0. For this case the CL is concentrated at |z| <δ ≈ 0.002 (figure 8). Above and
below δ the vorticity structure is almost untilted and in phase with its associated IW.
Hence we can decompose the double integral of (4.4) into three contributions: (i)∫ −δ

z′ = −∞
∫ ∞

z′′ = δ
, accounting for the constructive interaction between the kernels outside

the CL; this interaction is dominated by the two-IW interaction; (ii)
∫ −δ

z′ = −∞
∫ δ

z′′=0
+∫ 0

z′=−δ

∫ ∞
z′′=δ

, accounting for the destructive interaction between the CL and the kernels
outside of it; this interaction is dominated by the destructive interaction between the

CL and the IWs; (iii)
∫ 0

z′=−δ

∫ δ

z′′=0
, accounting for the destructive interaction between

the kernels within the CL. Normalizing the whole contribution of (4.4) at z = 0 to
unity,

−uw(z = 0) = 1 = (i) + (ii) + (iii) = 49.2 − 32.1 − 16.1. (4.5)

Hence the dominated IW–IW positive contribution is almost balanced by both the
IW-CL interaction and the self-destructive effect of the CL kernels. Indeed the mode
is only slightly unstable.

5. Summary and discussion
The dynamics of linear shear flow can be examined from a wave theory perspective

or alternatively from a field theory one. These two perspectives are very different
from each other. The former views the dynamics in terms of the ability of waves
to propagate/decay/become absorbed/become reflected or over-reflected, in different
regions across the shear. The latter views the dynamics in terms of instantaneous
action-at-a-distance interaction across the shear, between different remote vorticity
waves propagating against the shear (but not across it). Each of the perspectives
is valid, of course, and preferring one to the other is in some sense a matter of
personal taste. For barotropic and baroclinic instabilities large bodies of literature
exist for the two perspectives, and recently Harnik & Heifetz (2007) related them to
obtain a deeper understanding of the instability mechanism. For stratified shear flows,
however, most of the research literature takes the wave theory point of view. The
current study continues the work of Baines & Mitsudera (1994) and Harnik et al.
(2008) in an attempt to establish a coherent field theory perspective to stratified shear
flow instability.

The need for such a perspective arises because the basic intuition associated
with the M–H criterion – that the shear acts to destabilize the flow, while the
stratification acts to stabilize it – fails when considering a simple set-up of a Boussinesq
plane Couette flow with two density jumps. Without the jumps the flow is sheared
and unstratified; yet it is neutral with respect to modal perturbations. Counter-
intuitively, it is destabilized when stable stratification is added. (This effect was
actually manifested earlier by Lindzen & Barker 1985, who showed that two stably
stratified regions are needed to extract energy from a Couette flow.) This set-up is
analogous in some aspects to the baroclinic Eady (1949) model. There the over-
reflection view (wave theory) seems a bit artificial, while the Rossby edge wave
interaction view (field theory) seems more natural. Nevertheless, the over-reflection
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approach has been under investigation more intensely and therefore covers many
cases such as viscous flow (Lindzen & Rambaldi 1986) and normal-mode as well
as non-modal instabilities (Lindzen & Rosenthal 1981). Non-normal-mode instability
has only been fairly recently interpreted by the field perspective (Heifetz & Methven
2005).

As opposed to the Eady (1949) model, where the Rossby IWs are generated by
potential vorticity gradients, here the vorticity IWs are gravity waves generated by
buoyancy gradients. In the Eady model each interface supports one CRW, whereas
here two gravity waves exist at each density jump, one counter-propagating and one
pro-propagating with the mean flow. Although this complicates the dynamics and
although the wave generation mechanism is different, we have shown in detail that
the essence of the instability is the same as in the Eady model. The two counter-
propagating waves, one from each interface, dominate the dynamics as they phase
lock each other in a growing configuration. The role of the pro-propagating waves
was found to be minor (mainly in expanding the spectral range of instability in the
low-wavenumber hindering regime). These results are in line with the view of Baines
& Mitsudera (1994).

This simple set-up by itself emphasizes the subtleties associated with the M–H
criterion. A single density jump in a plane Boussinesq Couette flow satisfies the M–H
necessary, but insufficient, condition for instability (since the Richardson number is a
delta function there and zero elsewhere); nonetheless the flow is neutral. Only when
another density jump is added so that gravity waves can interact constructively at a
distance, the flow becomes unstable. Furthermore, it seems strange that if we add an
ambient stratification in between the density jumps so that the ambient Richardson
number exceeds the small value of a quarter (compared with infinity in the two jumps),
the instability is shut down. The explanation of Baines & Mitsudera (1994), that the
waves are then absorbed by the CL and hence are heavily damped, mixes arguments
from the two perspectives. Here we used the field theory KGW formulation derived
by Harnik et al. (2008), which can be applied to continuous stratification as well, to
show that the CL is the region which is persistently amplified by the IWs, simply
because fluid parcels there have no relative zonal motion with respect to the locked
IWs. Hence, although the ambient stratification is small and uniform everywhere, at
the CL the particle displacement anomalies are large so that the resulting buoyancy
generation of vorticity is also large. The resulting continuous dynamical structure can
be then simplified to a three-kernel dynamics – two counter-propagating IWs at the
interfaces and one standing-wave kernel at the CL.

From this perspective, the CL does not ‘absorb’ the two interacting waves; rather
it is a standing-wave-like kernel which decreases the two mutually amplifying kernels.
This instability is allowed only when the CL effect is weak enough, that is, when the
Richardson number is smaller than a quarter. This destructive role of the CL may
seem surprising, when recalling that in the CL energy flux is diverging; hence energy
is being yanked from the mean flow to the perturbation. The kernel formulation
provides a rigorous way to compute the action-at-a-distance contribution of the
remote kernels to the energy flux. It then turns out that it is the interaction between
the two IWs that contributes towards positive energy flux divergence at the CL, while
the interaction between the CL kernel and the IWs contributes towards energy flux
convergence and therefore towards stabilization of the flow (a similar effect has been
observed by Harnik & Heifetz 2007 in barotropic and baroclinic shear flows).

To conclude, we investigated one of the simplest set-ups for stably stratified shear
flow instability, and still the physical mechanism of the instability is far from being
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Figure 12. The continuous ‘tanh’ density profile solution in comparison with the
two-density-jump solution for (a) the growth rate as a function of the wavenumber and

(b) the amplitude and phase for the most unstable wavenumber in the case of R̂i = 1. The tanh
solution converges to the two-density-jump solution when ε → 0. In (a), ε = 0.01 was chosen,
while for (b), ε = 0.1, since the former value produces indistinguishable amplitude solutions
(the vorticity amplitude for the tanh solution appears to be two delta functions).

simple. A possible reason for this is that the M–H theorem is necessarily spectral
(one must assume a priori a modal solution to obtain the condition) and hence is not
derivable from Hamiltonian considerations (Shepherd 1990). This stands in contrast
to barotropic and baroclinic shear flows whose instability conditions can be derived
from globally conserved Hamiltonians (Heifetz, Harnik & Tamarin 2009).

We are grateful to the Israeli Science Foundation (1084/06 and 1370/08).

Appendix A. Two density jumps as a limit case of a continuous density profile
The continuous density profile (figure 2b)

ρ = ρ0 − |�ρ|
2

[
tanh

z − h

εh
+ tanh

z + h

εh

]
(A 1)

yields the Richardson number

Ri =
R̂i

2ε
[2 − (tanh2 ((z − 1)/ε) + tanh2 ((z + 1)/ε))], (A 2)

where ε > 0 is a tunable parameter measuring the relative width of the layer (in
which the density varies) compared with the distance between the layers. When
ε → 0, (A 1) and (A 2) converge respectively to (3.1) and (3.3). It is straightforward
to show that the M–H criterion is satisfied for this continuous profile. In figure 12
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we take ε = 0.01 and solve the eigenvalue problem, both by the kernel approach to
the vorticity–displacement equations (Appendix B) and by a shooting method of the
Taylor–Goldstein equation. Figure 12(a) shows the growth rate solution for various

values of R̂i. The agreement with the discontinuous solution (figure 5a) is excellent.

Figure 12(b) shows the profile of the Richardson number for R̂i = 1 and the vorticity
structure of its most unstable mode (k = 0.43). The vorticity is maximized at z = ± 1,
and the phase difference between these two points (ε ≈ 1.4π) is in perfect agreement
with the discontinuous profile (the plots second from the bottom in figure 5c,d ).

Appendix B. Numerical modal solution of the vorticity–displacement equations
Discretizing the normalized version of (2.2) and (2.4) yields(

∂

∂t
+ ikzj

)
qj = −ikRij ζj , (B 1)

(
∂

∂t
+ ikzj

)
ζj =

N∑
n=1

qnGj,n. (B 2)

The domain is taken between (−3.5, 3.5) to assure no numerical boundary effect
(the density jumps are located at z = ±1). Furthermore, N = (7/�z) + 1 =1751 is
the number of points at which sufficient accuracy is obtained for �z = 4 × 10−3.

The Richardson number profile of (4.2) is discretized so that Ri(z = ±1) = R̂i/�z

and Ri(z �= ±1) = Riamb elsewhere. The discretized Green function is Gj,n = −�z ·
(i/2) exp(−k|zj − zn|). Redefining G̃= (i/k)G, (B 1) and (B 2) can be written in the
matrix form:

∂

∂t

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q1

·
·

qN

ζ1

·
·

ζN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
2N×1

= −ik ·

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

z1 0 · 0 Ri1 0 · 0

0 · · 0 · ·
· · 0 · · 0

0 · 0 zN 0 · 0 RiN

G̃1,1 · · G̃1,N z1 0 · 0

· · · 0 · ·
· · · · · 0

G̃N,1 · · G̃N,N 0 · 0 zN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
︸ ︷︷ ︸

A2N×2N

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q1

·
·

qN

ζ1

·
·

ζN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
2N×1

, (B 3)

where the normal modes are the eigensolution of (B 3).

Appendix C. Analytical solution of Taylor–Goldstein equation
Applying the linearized material derivative D/Dt to the normalized version of

(2.2), expressing the vorticity and the vertical velocity in terms of the streamfunction
and looking for the normal-mode solution yield the Taylor–Goldstein equation (e.g.
Baines 1998) with zero shear curvature:

ψzz +

[
Ri

(z − c)2
− k2

]
ψ = 0. (C 1)
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For the transformation of variables y = (z − c)k and ψ̃ = ψ/
√

y, the Taylor–Goldstein
equation is transformed into the modified Bessel equation (e.g. Sneddon 1956)

y2ψ̃yy + yψ̃y − (y2 + ν2)ψ̃ = 0, (C 2)

with ν =
√

1/4 − Ri, whose general solution is

ψ =
√

y[C1Iν(y) + C2I−ν(y)], (C 3)

where Iν and I−ν are the modified Bessel functions and C1 and C2 are two constants.
Equivalently we can obtain the Bessel function from the Taylor–Goldstein equation
by writing ỹ = iy,

ỹ2ψ̃ỹỹ + ỹψ̃ỹ + (ỹ2 − ν2)ψ̃ = 0, (C 4)

whose solution is

ψ =
√

y[AH1(iy) + BH2(iy)], (C 5)

where H1 and H2 are the Hankel functions and A and B are two constants. Since the
two formulations are equivalent we arbitrarily choose to use the Hankel functions for
the matching solution.

We hence decompose the set-up of figure 2(c) into the three domains, namely (i)
z > 1, (ii) −1 <z < 1 and (iii) z < −1, and look for the solution ψj =

√
y[AjH1(iy) +

BjH2(iy)], where the subscript j = 1, 2, 3 indicates the domain. We require continuity
of the streamfunction:

z = 1: ψ1 = ψ2; z = −1: ψ2 = ψ3. (C 6a,b)

Integration of the vorticity across z = 1 together with the definition (3.4) of the
vorticity there yields [

∂ψ1

∂z
− ∂ψ2

∂z

]
z=1

= q̂1. (C 7)

The Taylor–Goldstein equation then suggests that[
∂ψ1

∂z
− ∂ψ2

∂z
= − R̂i

(1 − c)2
ψ

]
z=1

, (C 8)

and similarly for z = −1 we obtain[
∂ψ2

∂z
− ∂ψ3

∂z
= − R̂i

(1 − c)2
ψ

]
z=−1

. (C 9)

The outer radiation conditions of ψ1(z → ∞) = 0 and ψ3(z → −∞) = 0 set B1 = A3 = 0.
Substituting (C 5) into (C 6), (C 8) and (C 9) and writing y1 = k(1−c) and y2 = k(−1−c)
we get

A1H1(iy1) = A2H1(iy1) + B2H2(iy1), A2H1(iy2) + B2H2(iy2) = B3H2(iy2), (C 10a,b)

(A1 − A2)

[
∂

∂z
[
√

yH1(iy)]y1

]
− B2

[
∂

∂z
[
√

yH2(iy)]y1

]
− A1

R̂i

(1 − c)2
√

y1H1(iy1) = 0,

(C 11)

(B2 − B3)

[
∂

∂z
[
√

yH2(iy)]y2

]
+ A2

[
∂

∂z
[
√

yH1(iy)]y2

]
− B3

R̂i

(1 − c)2
√

y2H2(iy2) = 0.

(C 12)
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Hence, in order to obtain a non-trivial solution, Det(M) = 0, where

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

H1(iy1) −H1(iy1)

∂

∂z
[
√

yH1(iy)]y1
+

R̂i

(1 − c)2
√

y1H1(iy1) − ∂

∂z
[
√

yH1(iy)]y1

0 H1(iy2)

0
∂

∂z
[
√

yH1(iy)]y2

−H2(iy1) 0

− ∂

∂z
[
√

yH2(iy)]y1
0

H2(iy2) −H2(iy2)

∂

∂z
[
√

yH2(iy)]y2
− ∂

∂z
[
√

yH2(iy)]y2
+

R̂i

(1 + c)2
√

y2H2(iy2)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (C 13)

This yields the phase speed c. The coefficients A1, A2, B2 and B3 are then obtained
when solving (C 10) and (C 11). After deriving the solution for ψ we easily obtain the
vertical displacement ζ = ψ/(z − c) and the vorticity q = −[Ri/(z − c)2]ψ .

Appendix D. Integrated kernel contribution to the momentum flux
We wish to express

uw =
1

2π

∫ 2π

0

Re(u)Re(w)d(kx) (D 1)

in terms of the inversion of the vorticity profile q = Q(z) exp{i[kx + α(z)]}. For clarity,
we redefine the Green function to be the real, positive-definite and non-dimensional
evanescent function, G̃(z, z′) = iG(z, z′) = (1/2) exp(−k|z − z′|), and use (2.3) to write

Re(w) =

∫
z′

Q(z′) sin[kx + α(z′)]G̃(z, z′) dz′, (D 2)

where the sine in the integrand simply indicates that the induced vertical velocity
is located a quarter of wavelength to the east of the inducing vorticity anomaly
(figure 11). Similarly we can write that

Re(u) = Re

(
i

k

∂w

∂z

)
=

1

k

∫
z′′

Q(z′′) cos[kx + α(z′′)]
∂

∂z
G̃(z, z′′) dz′′. (D 3)

Since (∂/∂z)G̃(z, z′′) > 0 for z < z′′ and (∂/∂z)G̃(z, z′′) < 0 for z > z′′, the integrand
indicates that the induced zonal velocity anomaly below (above) the inducing vorticity
anomaly is in phase (anti-phase). Substituting (D 2) and (D3) into (D 1) we obtain
after zonal integration

uw =

∫
z′

∫
z′′

1

2k
Q(z′)Q(z′′) sin[α(z′) − α(z′′)]G̃(z, z′)

∂

∂z
G̃(z, z′′) dz′dz′′. (D 4)

It is clear from the integrand that a single kernel (where z′ = z′′) does not
contribute to the momentum flux. Writing explicitly the Green function and its
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derivative,

G̃(z, z′) =
1

2

{
exp[−k(z − z′)] for z > z′,

exp[k(z − z′)] for z < z′ ,

∂

∂z
G̃(z, z′′) =

k

2

{
− exp[−k(z − z′′)] for z > z′′,

exp[k(z − z′′)] for z < z′′ .

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(D 5)

Then if z′′ > z > z′, the integrand yields −(1/8)Q(z′)Q(z′′) sin[α(z′′) −
α(z′)] exp[−k(z′′ − z′)], which is independent of z and positive if the vorticity
is tilted westward with height. Flipping between the dummy variables z′ and z′′

yields the same contribution, indicating that indeed [u(z′)w(z′′)]z = [u(z′′)w(z′)]z. If,
however, z > z′′ >z′ or z < z′ <z′′, then flipping between z′ and z′′ yields an exact
cancellation and hence zero contribution. Taking these considerations into account
we obtain (4.4) as the explicit form of (D 4).
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