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Normal form of synchronization and resonance between vorticity waves in shear flow instability
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A minimal model of linearized two-dimensional shear instabilities can be formulated in terms of an action-at-
a-distance, phase-locking resonance between two vorticity waves, which propagate counter to their local mean
flow as well as counter to each other. Here we analyze the prototype of this interaction as an autonomous,
nonlinear dynamical system. The wave interaction equations can be written in a generalized Hamiltonian
action-angle form. The pseudoenergy serves as the Hamiltonian of the system, the action coordinates are the
contribution of the vorticity waves to the wave action, and the angles are the phases of the vorticity waves. The
term “generalized action angle” emphasizes that the action of each wave is generally time dependent, which
allows instability. The synchronization mechanism between the wave phases depends on the cosine of their
relative phase, rather than the sine as in the Kuramoto model. The unstable normal modes of the linearized
dynamics correspond to the stable fixed points of the dynamical system and vice versa. Furthermore, the normal
form of the wave interaction dynamics reveals a new type of inhomogeneous bifurcation: annihilation of a stable
and an unstable star node yields the emergence of two neutral center fixed points of opposite circulation.
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I. INTRODUCTION

In their seminal paper, Hoskins et al. [1] presented a heuris-
tic minimal model for barotropic shear instability based on
the interaction at a distance between two counterpropagating
Rossby waves. This model has been formulated mathemat-
ically by Heifetz et al. [2] for the simple barotropic model
of Rayleigh [3] and by Davies and Bishop [4] for the simple
baroclinic model of Eady [5]. Later Methven et al. [6] showed
that this minimal model catches, surprisingly well, the essence
of the instability of realistic atmospheric jets with complex
baroclinic-barotropic structures. Harnik et al. [7] then showed
that the concept of resonance action at a distance in shear
flows is not exclusive to Rossby wave instability, but it can
be applied to gravity waves in stratified shear flows; cf. Guha
and Lawrence [8] and the thorough review by Carpenter
et al. [9]. Following that, Biancofiore et al. [10] applied the
model to include interfacial capillary wave instability between
immiscible sheared fluid layers and Heifetz et al. [11] to
Alfvén waves in magnetohydrodynamic shear flows.

Despite its importance, and to the best of our knowledge,
this minimal model has never been analyzed as a stand-alone
dynamical system, which is the purpose of this paper. We
aim to focus on its normal form, type of bifurcations, the
synchronization mechanism, and the relation of this model to
other generic nonlinear systems such as the Kuramoto model
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[12] and the bifurcations described by the complex Landau
equation [13].

The schematic picture of the interaction in its simplest form
can be drawn as follows. Consider a two-dimensional (2D)
shear flow profile, plotted in Fig. 1, in the (x, y) plane. The
mean flow U (y) is pointing only in the x direction, but its
speed varies with y. Furthermore, U (y) is positive in region
I and negative in region II. The vorticity, �, for a 2D flow is
a scalar, and for this shear flow profile, �(y) = −dU/dy is
nonpositive everywhere. Its cross-stream derivative however,
d�/dy = −d2U/dy2, is positive in region I and negative in
region II. Such flow satisfies the two celebrated necessary
conditions for shear instability of Rayleigh [3] and Fjørtoft
[14]. The Rayleigh inflection point criterion requires that the
mean vorticity’s cross-stream derivative changes sign within
the shear region, whereas the Fjørtoft condition has an ad-
ditional requirement: the signs of the cross-stream vorticity
derivative and the mean flow should be positively correlated.
In our case, both fields are positive in region I and negative in
region II, thereby satisfying Fjørtoft’s criterion in addition to
Rayleigh’s criterion.

The Rayleigh and Fjørtoft conditions were derived origi-
nally for normal mode instability and only in 1985 [1] were
related to the more general constants of motion in linearized
dynamics of pseudomomentum (or equivalently wave action,
for monochromatic waves) and pseudoenergy, respectively. In
that seminal paper, the authors provided as well a minimal
model to rationalize these conditions, as is illustrated below.
In a 2D inviscid, incompressible flow, a fluid element with
the velocity field u = (u, v) materially conserves its vortic-
ity, q̃ = ∂v/∂x − ∂u/∂y, as it moves. Since in region I the
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FIG. 1. Schematic of interacting vorticity waves in a shear flow. A hyperbolic tangent shear layer and the corresponding vorticity gradient
profile are shown on the left-hand side. On the right-hand side, the cross-stream displacement, the associated cross-stream velocity, and the
associated sign of vorticity for each wave are shown and represented by the same color. The position of each undulating material line after
a short time interval is shown by dashed line. Interaction leads to an additional cross-stream velocity (shown by a different color). Note
that cross-steam velocities due to undulations of the other material line are weaker (represented by shorter arrows) than those due to the
self-induced vorticity anomalies. The horizontal arrow associated with a wave indicates the intrinsic wave propagation direction. Both waves
are counterpropagating, i.e., moving opposite to the background velocity at that location.

cross-stream derivative of the mean vorticity is positive, a fluid
element that is displaced southward (in the negative y direc-
tion) conserves its relatively high vorticity and consequently
develops a positive vorticity anomaly, q, which induces a
counterclockwise circulation. Similarly, a fluid element that
is displaced northward develops a negative vorticity anomaly
with clockwise circulation. Thus, an undulated sinusoidal
material line in region I (indicated by the gray solid line in
Fig. 1) will tend to propagate to the west (in the negative
x direction, the dashed gray line), counter to the mean flow
U , because the induced cross-stream velocity will shift fresh
vorticity anomalies to the left of the existing ones.

Applying the same logic to region II, an undulated sinu-
soidal material line here will propagate to the east (black
solid and dashed lines in Fig. 1), counter as well to the mean
flow there. These waves, denoted as shear Rossby waves, are
the building blocks of the minimal model. The sign of the
cross-stream mean vorticity gradient determines the direction
of their intrinsic phase speed. Therefore, when the Rayleigh’s
criterion is satisfied, the waves propagate counter to each
other, and when the Fjørtoft condition is satisfied as well,
the waves also propagate counter to their local mean flow.
Consequently, despite the mean shear, and even in the absence
of interaction between the waves, the difference between the
waves’ phase speeds is relatively small.

The second essential ingredient in this minimal model is
the interaction at a distance between those building blocks.
While the waves’ vorticity fields are localized, the velocity
field attributed to each vorticity field is nonlocal by nature and
decays away from each vorticity wave. Consequently, the two
waves can interact at a distance by inducing on each other their
individual cross-stream velocities. If the two waves’ vorticity
fields are in phase [Fig. 2(a)], their cross-stream velocity
will be in phase as well. Therefore, the induced velocity

of one wave on the other will “help” the latter to translate
its displacement faster, and as a result, each wave will be
propagating faster counter to its mean flow. In contrast, if
the vorticity of the waves are in antiphase [Fig. 2(b)], the
waves will hinder each other’s counterpropagation rate. If the
upper wave’s vorticity lags the lower one by a quarter of a
wavelength (so that the waves are π/2 out of phase), the
far-field velocity induced by each wave will not affect the
propagation rate but will amplify the waves’ displacements.
As each wave’s displacement amplitude is tied to its vorticity,
an increase in the vorticity amplitude of one wave will lead to
an amplification of the vorticity amplitude of the other wave.
Therefore, this scenario describes a mutual instantaneous
amplification at a distance [Fig. 2(c)]. In contrast, if it is the
lower wave’s vorticity which is lagging the upper one by a
quarter of a wavelength, the waves will mutually decay each
other’s amplitudes [Fig. 2(d)]. Generally, any setup of phase
difference between the two waves yields mutual interactions
that affect both the waves’ amplitudes and the waves’ propa-
gation rates [Fig. 2(e)]. Figure 1 demonstrates a configuration
where the waves amplify each other’s amplitude but hinder
each other’s counterpropagation rate.

The wave interaction picture described above can be trans-
lated into a generic set of equations constructing the minimal
model. Denote the vorticity waves’ anomaly in the two regions
as q1,2(t ), and writing them in terms of their amplitudes and
phases q1,2 = Q1,2eiε1,2 , we follow Ref. [15] to obtain

Q̇1 = σ1Q2 sin ε, Q̇2 = σ2Q1 sin ε, (1a)

ε̇1 = −ω̂1 + σ1
Q2

Q1
cos ε, ε̇2 = −ω̂2 − σ2

Q1

Q2
cos ε. (1b)

Consider the first equation set (1a), which relates to the inner
circle of Fig. 2(e) and describes the instantaneous growth
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FIG. 2. Schematic description of the linear interactions between counterpropagating vorticity waves. The waves depict interfacial
displacement, while the horizontal and vertical arrows, respectively, denote streamwise (background) and cross-stream velocities. Note that
cross-steam velocities due to undulations of the other material line are weaker (represented by shorter arrows) than those due to the self-induced
vorticity anomalies. (a) Fully helping, (b) fully hindering, (c) fully growing, and (d) fully decaying configurations. (e) Depending on the phase
difference ε between the vorticity perturbations at the upper and lower undulating material lines, different kinds of linear interactions can be
expected, as shown by the “concentric circles.” The locations where the configurations (a)–(d) occur have been marked. The configuration
given in Fig. 1 lies in the second quadrant (shaded in gray), which is the “growing-hindering configuration.”

or decay of the wave amplitudes due to the interaction at
a distance. The waves’ relative phase is ε ≡ ε1 − ε2, while
the interaction at a distance coefficients, σ1,2, depend on the
details of the problem. Note that σ1 is determined by the
evanescent structure of the cross-stream velocity of wave 2,
the effective distance between the two waves and the cross-
stream mean vorticity gradient in region I (where equivalent
arguments are implied for σ2). It indeed indicates that ε =
π/2 [Fig. 2(c)] is the optimal phase for mutual instanta-
neous amplification. Equation set (1b) relates to the outer
circle of Fig. 2(e). The waves’ frequencies, ω̂1,2, in the ab-
sence of interaction includes both the effects of advection by
the mean flow, U1,2 (which provides the Doppler shift), and
the counterpropagation rate (which is the intrinsic frequency).
The frequency of each wave can be either positive or negative.
Positive values of ω̂1,2 > 0, indicate eastward wave propaga-
tion (in the positive x direction) in the absence of interaction,
where the minus sign in front of them, at the right-hand side
of (1b), is because the waves’ phases increase when they
propagate westward. Thus, when the waves’ vorticity fields
are in phase [cos ε = 1; see Fig. 2(a)], the waves help each
other to counterpropagate in agreement with the plus and
minus signs in the last terms of Eq. (1b) [16]. The same logic
can be applied for ε = π , Fig. 2(b), where the waves hinder
each other’s propagation rate.

It is worth noting that although the system (1) is composed
of inhomogeneous nonlinear ordinary differential equations,
it describes the linearized dynamics of small perturbations
in shear flows. This is, to some extent, analogous to the
nonlinear description of the small amplitude dynamics of two
coupled pendulums. This toy model should be taken more as
a conceptual model rather than an exact one and is related
only to the onset phase of the instability. Obviously for finite
(even small) amplitudes, each wave in each of the regions will
feel the shear within its own region and consequently will lose
its coherency. Nevertheless, it is somewhat surprising how
reasonably well this minimal model catches the essence of the
instability dynamics in some circumstances. In the Appendix
we compare the exact solution of a piecewise linear shear
profile approximation (also known as the Rayleigh problem
[3]) to the hyperbolic tangent mixing layer profile plotted in
Fig. 1. For the Rayleigh setup, equation set (1) is an exact
description of the discrete spectrum dynamics [2]. It is surpris-
ing how similar the dispersion relations of the two problems
are, and how similar are the structures of their most unstable
modes. Even more surprising, when the fully nonlinear dy-
namics of equilibrated baroclinic [6] and barotropic [17] jets
were analyzed, the power spectrum evolution partly obeys the
dynamics of equation set (1). Furthermore, Ref. [15] showed
how generally the discrete spectrum of a linearized dynamics,
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conserving potential vorticity, can be mapped into equation set
(1), albeit the vorticity waves are not generally localized if the
shear profile is composed of a series of concave and convex
sections (see, e.g., Fig. 9 below).

Note also that the Rossby wave mechanism is only one pos-
sibility to obtain counterpropagating vorticity waves. Waves
whose vorticity and cross-stream displacement fields are in
(anti) phase will propagate to the (west) east, relative to the
mean flow, as the cross-stream velocity will shift the dis-
placement accordingly. If a different restoring force translates
the vorticity in concert, then the essence of the dynamics of
(1) is still applicable. Examples of such other vorticity wave
dynamics are gravity [7] and capillary [10] waves in stratified
shear flows and Alfvén [11] waves in magnetohydrodynami-
cal shear systems.

The organization of the paper is as follows. In Sec. II we
derive its general properties, and then in Sec. III we analyze
the dynamics in detail with relation to the physical inter-
action mechanism described in the introduction. In Sec. IV
we implement these results to the concrete example of the
Rayleigh piecewise linear shear profile, and then in Sec. V
we generalize the two-wave interactions of Eq. (1) to the case
of multiple-wave interactions. We close by concluding our
results in Sec. VI.

II. GENERAL DYNAMICAL PROPERTIES

A. Generalized canonical action-angle formulation

It is straightforward to verify that the system (1) conserves
the following two constants of motion:

H = −ω̂1
Q2

1

2σ1
+ ω̂2

Q2
2

2σ2
+ Q1Q2 cos ε

= −(ω̂1A1 + ω̂2A2) − 2iσ
√
A1A2 cos ε, (2a)

A = Q2
1

2σ1
− Q2

2

2σ2
= A1 + A2, (2b)

where σ ≡ √
σ1σ2 is the geometric mean of the interaction

coefficients. The first conserved quantity is denoted as the
pseudoenergy of the system, and the second is its action,
which is also proportional to the psuedomomentum [15,18].
The term “generalized” is used here because, as opposed to
the classical action-angle formulation, the actions associated
with each wave (each degree of freedom), A1 = [Q2/(2σ )]1

and A2 = −[Q2/(2σ )]2, are not conserved individually. It is
also straightforward to verify that

H = A1ε̇1 + A2ε̇2.

Therefore, Eqs. (1a)–(1b) can be rewritten in a canonical
generalized action-angle form, in which H serves as the
Hamiltonian:

Ȧ1 = −2iσ
√
A1A2 sin ε = −∂H

∂ε1
,

Ȧ2 = 2iσ
√
A1A2 sin ε = −∂H

∂ε2
, (3a)

ε̇1 = −ω̂1 − iσ

√
A2

A1
cos ε = ∂H

∂A1
,

ε̇2 = −ω̂2 − iσ

√
A1

A2
cos ε = ∂H

∂A2
. (3b)

To avoid confusion, note that Eqs. (2)–(3) comprise only
real terms because A2 is negative definite; here we took its
positive root

√
A2 = i[Q/

√
2σ ]2.

B. The complex normal form

The nonlinear, real, inhomogeneous set of Eqs. (1a)–(1b)
results from linearization of the material conservation of vor-
ticity equations in the two regions. The latter yields a set of the
following two linear, complex, homogeneous equations [see
Eqs. (11)–(12) of Ref. [15] and Eqs. (4.1)–(4.2) of Ref. [8]]:

q̇1 = −iω̂1q1 + iσ1q2, (4a)

q̇2 = −iω̂2q2 − iσ2q1. (4b)

Define the complex variable:

Z ≡
√

σ2

σ1

q1

q2
≡ χeiε, (5)

where χ = √
σ2/σ1(Q1/Q2) is a scaled ratio of the wave

amplitudes. Hence Eqs. (4a)–(4b) can be then written in the
compact complex form

Ż = iσ

[
Z

(
Z − ω̂

σ

)
+ 1

]
, (6)

where ω̂ ≡ ω̂1 − ω̂2. Defining the control parameter μ ≡
ω̂/σ , and using a scaled time τ ≡ σ t , Eq. (6) can be expressed
as the following normal form:

dZ
dτ

= i[Z (Z − μ) + 1]. (7)

The normal form is complex because it describes the evolution
of both the waves’ amplitudes and phases. It is inhomogenous
since the mean flow acts as an external forcing. Furthermore,
the essence of the system dynamics is an interaction between
waves with different intrinsic frequencies. Thus, the dynamics
is controlled by a single parameter, which is the ratio between
the frequency difference of the two waves and the mean
interaction coefficient.

C. Relations between fixed points and normal modes

The complex fixed points of Eq. (7) are obtained when the
waves’ (scaled) amplitude ratio χ∗ and their relative phase ε∗
remain fixed (where the asterisk denotes the values at the fixed
points):

dZ
dτ

= eiε

[
dχ

dτ
+ iχ

dε

dτ

]
= 0. (8)

We also note that these fixed points are the normal modes of
the equivalent linear system Eq. (4). To show this we write the
latter in a matrix form:

q̇ = Aq ; q =
[

q1

q2

]
,

A = −i

[
ω̂1 −σ1

σ2 ω̂2

]
⇒ q =

2∑
j=1

a jp je
λNM

j t , (9)
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FIG. 3. Bifurcation diagram. Black line denotes λNM
i , and red

line denotes λNM
r . The unstable normal modes (λNM

r > 0) compose
the branch of stable fixed points (marked by the solid red line) of
the dynamical system Eq. (7), whereas the stable modes (λNM

r < 0)
compose the unstable branch (marked by the dashed red line).

where a j are constants, and p j and λNM
j are, respectively, the

complex eigenvectors and eigenvalues of A. Then if we denote

p j =
[

P1eiφ1

P2eiφ2

]
j

, φ ≡ φ1 − φ2 , λNM = λNM
r + iλNM

i ,

(10)
the jth normal mode solution can be written as

q =
[

Q1eiε1

Q2eiε2

]
=

[(
P1eλNM

r t
)
ei(φ1+λNM

i t )(
P2eλNM

r t
)
ei(φ2+λNM

i t )

]
j

. (11)

Therefore, χ∗ = √
σ2/σ1(Q1/Q2)∗j = √

σ2/σ1(P1/P2) j =
const1 and ε∗

j = (ε1 − ε2) j = φ j = const2. To simplify the
analysis we hereafter refer to the motion in the frame of
reference of the mean frequency (rather, phase speed) in
the absence of interaction, i.e., ω = (ω̂1 + ω̂2)/2. There the
eigenvalues of A (normalized by σ ) satisfy

λNM
1,2 = ±

√
1 −

(μ

2

)2
. (12)

Note that the condition of constant wave amplitude ratio
applies for normal modes with either positive, negative, or
zero growth rate (λNM

r ), and the phase-locking condition
implies that the waves are moving in concert with the same
frequency (−λNM

i ), which as well can be either positive,
negative, or zero. The dependence of eigenvalues on the bi-
furcation parameter, μ, is shown in Fig. 3. Clearly, the nature
of the eigenvalues changes at |μ/2| = 1; the normal form
Eq. (7) demonstrates a new kind of bifurcation where a pair
of eigenvalues transform from pure real to pure imaginary. In
the following section, we carry out this analysis in more detail
and augment it by drawing the phase portrait of the system.

The final aim is to link the dynamics on the phase plane with
the mechanistic understanding of wave interaction presented
in the introduction.

III. DYNAMICAL SYSTEM ANALYSIS

A. Dynamics on a compact non-Hamiltonian degenerated
phase plane

We can express Eq. (7) in terms of (χ, ε) to obtain the
following autonomous, nonlinear dynamical system:

dχ

dτ
= (1 − χ2) sin ε, (13a)

dε

dτ
= (χ + χ−1) cos ε − μ. (13b)

We note that the (scaled) waves’ amplitude ratio and phase
difference are, respectively, within the ranges of χ ∈ (0, ∞)
and ε ∈ [−π, π ]. Equations (13a)–(13b) are in polar coordi-
nates, with χ being the radius and ε being the azimuthal angle.
Equivalently it can be expressed in a Cartesian form:

U ≡ dX

dτ
= Y (μ − 2X ), (14a)

V ≡ dY

dτ
= −μX + X 2 − Y 2 + 1 (14b)

(where X = χ cos ε and Y = χ sin ε), from which we com-
pute the divergence and curl of the phase plane flow:

D ≡ ∂U
∂X

+ ∂V
∂Y

= −4Y, (15a)

C ≡ ∂V
∂X

− ∂U
∂Y

= −2(μ − 2X ). (15b)

The phase portrait corresponding along with the divergence
field and the same along with the curl field are, respectively,
shown in Figs. 4 and 5. The fixed points in polar coordinates
are

(χ, ε)∗ =
(

1, ± cos−1
[μ

2

])
when

∣∣∣μ
2

∣∣∣ � 1, (16a)

(χ, ε)∗ =
(

μ

2
±

√[μ

2

]2
− 1, 0

)
when

μ

2
� 1, (16b)

(χ, ε)∗ =
(

−μ

2
±

√[μ

2

]2
− 1, π

)
when

μ

2
� −1, (16c)

or equivalently in Cartesian coordinates:

(X,Y )∗ =
(

μ

2
, ±

√
1 −

[μ

2

]2
)

when
∣∣∣μ

2

∣∣∣ � 1, (17a)

(X,Y )∗ =
(

μ

2
±

√[μ

2

]2
− 1, 0

)
when

∣∣∣μ
2

∣∣∣ � 1. (17b)

The stability of the fixed points is obtained from the eigen-
values, λJ

1,2, of the Jacobian matrix J , evaluated at the fixed
points,

d

dτ

[
δX
δY

]
= 1

2

[
D −C
C D

]∗[
δX
δY

]
, (18)
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FIG. 4. Phase portrait with colors indicating the divergence field, D. The green and black dots denote the fixed points. A unit circle,
centered at the origin, is plotted in cyan. (a) μ = −3, (b) μ = −2, (c) μ = −1, (d) μ = 0, (e) μ = 1, (f) μ = 2, and (g) μ = 3.

yielding λJ
1,2 = (D∗ ± iC∗)/2. Transforming (δX, δY ) =

δR(cos θ, sin θ ) to polar coordinates whose origin is located
at the fixed points, we obtain at the fixed points’ vicinity

δR = δR0eD
∗τ/2, δθ = δθ0 + C∗τ/2. (19)

1. The case of |μ

2 | < 1

The control parameter μ represents the ratio between the
difference between the waves’ frequencies (in the absence of
interaction) and the mean interaction coefficient. The former

acts to shear the waves apart, whereas the latter acts to keep
them together.

When |μ/2| < 1, this ratio is not very large, and the
obtained fixed points are located on the unit circle (χ = 1),
see Eq. (16a). We first note that on the unit circle, the total
wave action A given in Eq. (2b) vanishes. Furthermore, at the
fixed points, when in addition cos ε = μ/2, the pseudoenergy,
given in Eq. (2a), vanishes as well. This allows normal mode
exponential growth (λNM

r > 0) or decay (λNM
r < 0) since then

these two constants of motion remain zero despite the tem-
poral change in the waves’ amplitudes. In order to see that,

FIG. 5. Phase portrait with colors indicating the curl field, C. Everything else is the same as in Fig. 4.
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substitute Eq. (11) in Eqs. (2a)–(2b) to obtain

H =
[
−ω̂1

P2
1

2σ1
+ ω̂2

P2
2

2σ2
+ μ

2
P1P2

]
e2λr t ,

A =
(

P2
1

2σ1
− P2

2

2σ2

)
e2λr t .

Therefore both (H,A) must vanish to remain constant when
λr �= 0). On the unit circle, the equation set (13a)–(13b)
reduces to

dε

d τ̃
= cos ε − μ

2
, (20)

where τ̃ = 2τ . Comparing with the synchronization model of
Kuramoto [12], here on the right-hand side, we have cosine
of the phase difference rather than its sine. This is because
the nature of the wave interaction is fundamentally different
from the one described in the Kuramoto model. As discussed
in Sec. I and specifically in Fig. 2, each wave does not try
to adjust its frequency to the other to obtain synchronization.
In contrast, when they are in phase, they act to increase
their phase difference [see Fig. 2(a)], and when they are in
quadrature (π/2 out of phase), the phase difference is not
affected at all by the wave interaction; see Fig. 2(c).

Furthermore, since ε∗ = ± cos−1(μ/2), it implies that the
fixed points are symmetric with respect to ε = 0 (this trans-
lates to a reflection symmetry about the X axis in Figs. 4 and
5). Consulting Fig. 2, growth is obtained when 0 < ε < π

(upper half-plane of Figs. 4 and 5) and decay when −π <

ε < 0 (lower half plane). When μ = 0, the waves propagate
in concert in the absence of interaction. Hence the only way to
keep them locked in the presence of interaction is to prevent
the interaction to affect the waves’ phase speeds. Thus, the
waves’ phase difference is either π/2 [for amplitude growth;
Fig. 2(c)] or −π/2 [for amplitude decay, Fig. 2(d)]. For
positive μ, the waves should help each other to counterprop-
agate in order to remain phase-locked (−π/2 < ε < π/2). In
contrast, when μ is negative, the waves should hinder their
counterpropagation rate (π/2 < ε < 3π/2).

The unstable (stable) normal modes are obtained when
the amplitude of the two waves grow (decay) with the same
exponential growth (decay) rate λNM

r . Indeed, as indicated
from Eqs. (1a) and (12), for χ∗ = 1,

λNM
r = 1

σ

Q̇1

Q1
= 1

σ

Q̇2

Q2
= sin ε∗, (21)

which is positive (negative) for the upper (lower) part of the
inner circle in Fig. 2(e). Furthermore, in the frame of reference
moving with the mean frequency ω, Eq. (12) also yields

λNM
i = (ε̇1)∗

σ
= (ε̇2)∗

σ
= 0; (22)

hence for |μ/2| < 1, we obtain pairs of growing and decaying
normal modes. We can now relate these normal mode stability
properties of the physical system with the fixed point stability
of the dynamical system on the phase plane. Equations (15)–
(17) indicate that for |μ/2| < 1, we have D∗ = −4 sin ε∗,
C∗ = 0, λJ

1 = λJ
2 = D∗/2 = −2λNM

r . Hence, both of the fixed
points are star nodes, where the physical growing normal
mode is a dynamical sink and the decaying mode is a source

in the phase plane. This apparent contradiction actually makes
sense when recalling that the physical solution is the super-
position of the two normal modes in Eq. (9). Therefore, any
initial condition which combines projection on the two normal
modes will converge in time to the unstable normal mode as
the stable mode decays with time.

2. The case of |μ

2 | > 1

When μ exceeds the absolute value of 2, the ratio between
the difference between the waves’ frequencies (in the absence
of interaction) and the mean interaction coefficient becomes
too large to allow modal growth. When μ > 2 the shear is
too strong, so the waves must be in phase (ε∗ = 0) to fully
help each other to counterpropagate against the shear. In
contrast, when μ < −2 the shear is too weak so the waves
must be antiphased (ε∗ = π ) to fully hinder each other’s
counterpropagation rate. In both cases Eq. (1a) indicates that
amplitude growth is prevented. Furthermore as |μ| > 2, the
amplitude symmetry between the waves is broken (χ∗ �= 1),
since (χ + χ−1)∗ > 2 [cf. Eq. (13b)], where the wave with the
larger amplitude affects the other more than vice versa.

Hence for μ > 2, and when χ > 1, the upper wave, with
the larger amplitude, will successfully help the lower one
to counterpropagate against its mean flow to end up with a
positive frequency relative to ω (rightward propagation). On
the other hand, the help provided by the lower wave (with
the smaller amplitude) to the upper one is less effective, and
as a result, the ability of the upper wave to counterpropagate
against the rightward mean flow becomes smaller. As a result
the upper wave is ending up as well with a positive frequency
relative to ω. This is how phase locking is achieved for
such neutral modes. Reversing the argument when χ < 1
we end up with leftward phase-locked propagation. Follow-
ing the same logic for μ < 2, and recalling that now the
waves hinder each others’ propagation, we end up with modal
leftward propagation for χ > 1 and rightward for χ < 1.
These corresponding compromised frequencies, relative to ω,
are obtained from the modal eigenvalues (12), where ω∗ =
−λNM

i = ±
√

( μ

2 )2 − 1.
Since in this regime the vorticity amplitudes (Q1,2) of

the waves remain small, these neutral modes have generally
little relevance for shear instability. Nevertheless, they are
interesting from the dynamical perspective. The vertical line,
X = μ/2, in the phase plane is an attractor for Y > 0 and
a repeller for Y < 0. When |μ/2| < 1, the fixed points are
located on the intersection between this vertical line and the
unit circle, where the stable star node (black dot in Fig. 5)
sits on the attracting side and the unstable one (green dot in
Fig. 5) on the separating side. When |μ/2| > 1 the two fixed
points sit on the X axis at equal distances from the two sides
of X = μ/2, where one point is inside the unit circle and the
other is outside of it. As is evident from Eqs. (15), (17), and
(19), these points are counterrotating center points (λJ

1,2 =
±i|χ∗ − 1/χ∗|, D∗ = 0, C∗ = ±2

√
( μ

2 )2 − 1). Hence, when
|μ/2| = 1, the normal form of Eq. (7) exhibits bifurcation
from a pair of a stable and unstable star nodes to two coun-
terrotating neutral center fixed points; see Fig. 6. We are not
familiar with other examples of such a type of bifurcation.
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FIG. 6. Trace-determinant diagram of the Jacobian matrix evalu-
ated at the fixed points. Two neutral center fixed points, respectively
shown by dark blue (positive circulation) and magenta (negative
circulation) circles, approach the origin (path shown by the blue solid
arrow) along the determinant axis (where D∗ = 0), as the bifurcation
parameter, μ, is decreased from a high absolute value to 2 (cf.
Fig. 3). A new type of bifurcation occurs at |μ| = 2; as |μ| is further
decreased, a source (filled orange circle with outward arrows) and
sink (filled green circle with inward arrows) fixed points are born.
These fixed points lie on the trace-determinant parabola (trace2 =
4 determinant where C∗ = 0). The exactly opposite behavior happens
when |μ| is increased beyond 2, along the path indicated by the
dashed blue arrows.

It is interesting to understand the dynamics of these cen-
ter modes. Perturbing the phase difference ε from the fully
helping or the fully hindering setup immediately yields either
a small growth or decay of the wave amplitudes. Since their
amplitudes are not even, this growth or decay is more pro-
nounced on the wave with the smaller amplitude, because the
wave with the larger amplitude affects the one with the smaller
amplitude more efficiently. Thus the amplitude ratio tends to
return to its unperturbed value. Similarly, initially changing
the amplitude ratio will unlock the waves, and as a result, it
changes the amplitude ratio, which will in turn act to restore
the phase to its neutral position. Hence, near the fixed points,
the system exhibits simple harmonic oscillations. To see this
mathematically let us write Eq. (18) in terms of (χ, ε):

d

dτ

[
δχ

δε

]
=

[ −2χ sin ε (1 − χ2) cos ε

(1 − χ−2) cos ε −(χ + χ−1) sin ε

]∗[
δχ

δε

]
.

(23)

In the vicinity of the neutral fixed points we obtain
d

dτ
δχ = ±(1 − χ2)∗δε, (24a)

d

dτ
δε = ±(1 − χ−2)∗δχ, (24b)

where the plus (minus) sign corresponds to the case where μ

is larger (smaller) than 2. For either case Eq. (24) yields

1

δχ

d2

dτ 2
δχ = 1

δε

d2

dτ 2
δε = −[(χ − χ−1)2]∗ = −(

λJ
i

)2
,

(25)
where |λJ

i | is the oscillation frequency, as expected.

B. A 3D conservative phase space

The four-equation set (1), or equivalently the Hamiltonian
system (3) of the two waves’ action-angle conjugate pairs,
were mapped in the previous subsection into the two-equation
set (13) or equivalently into Eq. (14). Hence, a four degrees of
freedom Hamiltonian system was mapped into a degenerate
non-Hamiltonian system with only two degrees of freedom. In
the former, the fixed points are centers, representing solutions
in which the two waves are both neutral and stationary. In the
latter, area is not conserved in the phase plane, which allows
sink and source fixed points to represent modal growth and
decay, respectively. The reason that such mapping is at all
possible is that the nonlinear system Eq. (1) emanates from the
linearized system Eq. (4), which can be determined only up to
an arbitrary complex scaling factor between q1 and q2. The
degeneracy results from the fact that the amplitude of such a
scaling factor is “hidden” inside χ and its phase inside ε.

Between the (impractical for demonstration) Hamiltonian
four-dimensional configuration phase space and the compact
nonconservative phase plane we note that the Hamiltonian
H is a function of A1, A2, and ε, and not separately of ε1

and ε2; see Eq. (2a). This allows the construction of a three-
dimensional (3D) volume-preserving phase space out of these
variables. The dynamical equations on this phase space are
given by Eq. (3a) (two equations) and the subtraction of the
two equations (ε̇1 from ε̇2) of Eq. (3b), yielding

ε̇ = −ω̂ + iσ

(√
A2

A1
−

√
A1

A2

)
cos ε = ∂H

∂A1
− ∂H

∂A2
. (26)

Volume is then conserved in this A1-A2-ε phase space:

∂Ȧ1

∂A1
+ ∂Ȧ2

∂A2
+ ∂ε̇

∂ε
= 0,

as can be easily proved using the facts that

Ȧ1,2 = − ∂H
∂ε1,2

and
∂ε

∂ε1
= 1 and

∂ε

∂ε2
= −1.

In this phase space the stable and unstable star nodes Eq. (16a)
of the 2D phase space are mapped into the lines satisfying
A1 = −A2 at the level of ε∗ = ± cos−1 (μ/2); see Fig. 7(a).
The neutral center fixed points of Eqs. (16b)–(16c) are
obtained for the lines

A1 = −
[

μ2

2
− 1 ± μ

√(μ

2

)2
− 1

]
A2,

on the surfaces ε∗ = 0 and π , respectively, as can be under-
stood from Figs. 7(b)–7(c).

IV. APPLICATION TO THE RAYLEIGH MODEL OF
SHEAR INSTABILITY

We wish to provide a concrete example for the wave
interaction mechanism. One of the simplest setups for shear
instability was suggested by Lord Rayleigh in 1879 [19] for a
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FIG. 7. Phase portrait showing selected trajectories in the conservative phase space A1-A2-ε. The Rayleigh instability problem of Sec. IV
has been chosen. (a) Unstable case: μ = 0 and initial points located along A1 = −A2, (b) Stable case: μ = 3 and initial points located along
A1 = −[μ2/2 − 1 + μ

√
(μ/2)2 − 1 ]A2 and (c) stable case: μ = 3 and initial points located along A1 = −[μ2/2 − 1 − μ

√
(μ/2)2 − 1 ]A2.

The red lines denote A1 = −[μ2/2 − 1 + ±μ
√

(μ/2)2 − 1 ]A2 for ε = 0. Colors show the normalized pseudoenergy, which, being a constant
of motion, remains constant along each trajectory.

piecewise version of the shear profile in Fig. 1:

U (y) =
⎧⎨
⎩

1 y � 1
y −1 � y � 1

−1 y � −1
. (27)

Detailed analysis of the problem in terms of wave interaction
can be found in Ref. [2] for modal instability and in Ref. [20]
for nonmodal growth. Here we note that for this piecewise
version of shear profile the mean vorticity gradient is concen-
trated in y = ±1:

d�

dy
= −d2U

dy2
= δ(y − 1) − δ(y + 1). (28)

Thus the two vorticity waves are interfacial so that the pertur-
bation vorticity q satisfies

q = [q1(k, t )δ(y − 1) + q2(k, t )δ(y + 1)]eikx, (29)

where k > 0 denotes the streamwise wave number. Analysis
of this symmetric setup reveals that σ = σ1 = σ2 = e−2k/2
and ω̂1 = −ω̂2 = k − 1/2, yielding ω = 0 and μ/2 = (2k −
1)e2k . Hence, the wave number is the actual control parameter
of the problem which is mapped into the control parameter μ

of the normal form of Eq. (7). Since k is positive, μ/2 > −1,
therefore k = 0 is the limit of two infinitely fast counter-
propagating waves that must be in antiphase to fully hinder
each other’s propagation rate in order to remain phase-locked.
Furthermore, k = 0.5 corresponds to μ = 0 where waves are
either π/2 or −π/2 out of phase for the growing and decaying

modes, respectively. Since μ/2 becomes larger than 1 for kc >

0.64, it therefore implies that for wave numbers larger than kc,
all normal modes are neural. In this scenario, the waves are
in phase to fully help each other to counterpropagate against
the shear; however, the wave amplitudes are not even. The
bifurcation diagram for Rayleigh’s shear instability is given
in Fig. 8.

V. MULTIWAVE INTERACTIONS

The interaction between the two vorticity waves, described
in Eq. (1), can be generalized straightforwardly to the case of
N number of interacting waves, as is illustrated schematically
in Fig. 9 and explained in the Appendix of Ref. [21] for
Rossby waves and in Ref. [18] for gravity waves. Multiple
vorticity waves are located in concave and convex regions
where the mean cross-stream vorticity derivative have local
extrema. The cross-stream velocity field at every level is now
composed of the in situ velocity field, induced by the wave
located at that level (indicated hereafter by the index i, and
the contributions of the far field velocity induced by all of
the other remote waves, indicated generally by the index j).
Naturally, the magnitude of the induced velocity decreases
with the distance according to the evanescent structure of the
Green function, which translates the vorticity source to the
far-field velocity field it induces. This structure is determined
by the details of the problem setup (cf. different examples in
the Appendix of Ref. [20]); however, it depends only on the
cross-stream distance between waves i and j. In the following
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FIG. 8. Bifurcation diagram for Rayleigh instability. Black line
denotes λi, solid red line denotes λr > 0, marking the unstable
normal mode, and the dashed red line denotes λr < 0, i.e., the stable
normal mode. Bifurcation occurs when k = 0.64 (shown by the thin
vertical line). Direct comparison can be made with Fig. 3, noting that
here μ is always greater than −2.

formulation Gi j represents the Green function induced by a
remote wave j on an in situ wave i. Since only the distance
between the two waves matters for G, it is symmetric, i.e.,
Gi j = Gji. Generally we may expect that adjacent pairs of
vorticity waves will affect each other more pronouncedly than
remote pairs. Nonetheless, a remote vorticity wave with a
large amplitude Qj may affect a distant wave more strongly
than a closer neighbor wave with a smaller amplitude.

Furthermore, as illustrated in Figs. 1 and 9 the cross-stream
velocity field acts directly on the wave displacement. Thus,
if the displacement and the vorticity wave anomalies are
in phase (like in wave “2” in Fig. 1) a positive far field

cross-stream velocity, acting to amplify the wave displace-
ment, is also amplifying the positive vorticity anomaly. In con-
trast, when the wave displacement and vorticity anomalies are
in antiphase (as in wave “1” in Fig. 1) such far-field velocity
will increase the negative value of the vorticity anomaly. The
amount by which an induced velocity increases the vorticity
amplitude of an in situ wave depends on the restoring mecha-
nism of the wave itself and is generally different for Rossby,
gravity, capillary, or Alfvén waves. As we are interested in the
prototype of the interaction we therefore indicate this factor by
αi, which is positive when the displacement and the vorticity
wave anomalies of wave i are in antiphase and negative when
they are in phase. Denoting εi j ≡ εi − ε j , and σi j ≡ αiGi j , the
generalization of Eq. (1) to N interaction waves read

Q̇i =
N∑

j=1

σi jQ j sin εi j, (30a)

ε̇i = −ω̂i +
N∑

j=1, j �=i

σi j
Q j

Qi
cos εi j . (30b)

Thus, from this wave interaction perspective modal phase
locking is achieved when a configuration is set to synchronize
all waves to propagate with the same frequency: −ω∗ =
λNM

i = ε̇1 = ε̇2 = · · · = ε̇N , and to exhibit the same growth
rate λNM

r = Q̇1/Q1 = Q̇2/Q2 = · · · = Q̇N/QN .
The wave action and the pseudoenergy conservation laws

for Eq. (30),

A =
N∑

i=1

Ai =
N∑

i=1

Q2
i

2σi
, H =

N∑
i=1

Aiε̇i, (31)

satisfy then the Hamilton equations

Ȧi = −∂H
∂εi

, ε̇i = ∂H
∂Ai

. (32)

FIG. 9. Schematic of a general shear layer, the complex instability dynamics of which can be understood using the minimal model of N
(= 4 in this case) interacting vorticity waves. The color convention is same as that of Fig. 1.
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FIG. 10. Rayleigh’s piecewise shear layer (thin solid line) and scaled shear layer, U = tanh(by)/ tanh(b) (thick solid line). The upper
(lower) dashed line represents y = 1(−1). (a) Mean velocity profiles and (b) mean vorticity gradient profiles.

VI. CONCLUSIONS

In this paper we have examined a simple, nonlinear, au-
tonomous dynamical system which describes some central
aspects of 2D shear instability. The building blocks of the
system are interacting counterpropagating vorticity waves. In-
stability is achieved when the waves are synchronized to prop-
agate in a phase-locked configuration which allows mutual
amplification, i.e., resonance. While this system is a “minimal
toy model” it manages to catches the essential mechanism
of the instability in different physical setups. The dynamics
originates from the linearized vorticity equation for shear
flows and therefore is valid only for small wave amplitudes.
Hence, triad interactions between waves with different wave
numbers are excluded. Nonetheless, the interaction between
distant waves of the same wave number across the shear is
nonlinear. Mathematically, this nonlinear representation of
linearized dynamics results from introducing the perturbation
field in its polar form, i.e., in terms of amplitude and phase.
However, this apparent additional complication provides a
clear mechanistic interpretation for the instability mechanism.
A somewhat similar example in which some aspects of linear
dynamics become clearer when introduced in its nonlinear
polar form is the Madelung equation [22], which converts the
linear Schrödinger equation into a fluid dynamic, Euler-like
equation [23].

The wave interaction equations are conservative. In the
generalized configuration space R2N (where N is the number
of the interacting waves) the pseudoenergy serves as the
Hamiltonian, the square of the wave amplitudes are propor-
tional to their wave action, and their phases can be considered
as angles. It is then straightforward to show that the system
satisfies a generalized action-angle Hamilton equations where
the total action of all the waves is conserved; however, the
action of each individual wave may change (unlike the clas-
sical action-angle formalism) due to the action-at-a-distance
interaction between the waves.

Since the wave interaction equations emanate from the lin-
earized dynamics, it is determined up to an arbitrary complex
scaling factor between the waves. As a result, the essence of
the wave interaction dynamics can be described in a reduced
nonconservative phase space with only N degrees of freedom.
In this ‘reduced’ phase space, unstable normal modes of the
linearized system are represented by stable star fixed points,
and the stable normal modes by unstable star fixed points.
This apparent contradiction actually makes sense since in the
linearized system, a perturbation solution is a superposition of
the unstable (growing) and stable (decaying) normal modes.
Hence, as time evolves, the perturbation will be biased to-
wards the unstable normal mode solution, diverging away
from the unstable fixed point (in the reduced phase space) and
converging towards the stable fixed point. If the shear is either
too strong or too weak to allow resonance, synchronization
between the waves is still possible. In these scenarios, the
waves are phase-locked to propagate in concert with the
same frequency; however, the amplitude of the waves does
not change due to the interaction between the waves. In the
linearized description, these configurations describe neutral
normal modes, whereas in the reduced phase space, these are
neutral central fixed points.

Furthermore, for the two-wave interaction problem, the
dynamics in the reduced phase-space can be succinctly ex-
pressed as a complex normal form equation for the normal-
ized perturbation vorticity ratio between the waves. It is a
nonhomogeneous equation (since the shear acts as an exte-
rior forcing) which includes a single control parameter. The
latter is the ratio between the differences between the waves’
frequencies in the absence of interaction and the interaction
coefficient. This makes sense as the waves generally tend to
propagate in opposite directions in the absence of interaction,
whereas the mutual interaction tends to keep them together.
This normal form [see Eq. (7)] exhibits bifurcation where
annihilation of a pair of stable and unstable star nodes yields
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the emergence of two neutral center fixed points of opposite
circulations. To the best of our knowledge, this is a new type
of bifurcation.

The two-wave and the general N-wave interaction dy-
namics described here can be regarded as well as a novel
model for synchronization. Each agent (wave) in isolation acts
to resist (counterpropagate against) a local external forcing
(the mean flow shear); some agents counterpropagate more
efficiently than others. Hence, alignment (phase locking) is
achieved only through overall collaboration (far-field interac-
tion) between the agents. The “too efficient” agents should be
hindered by the overall interaction whereas the “less efficient”
ones should be helped. This dynamics shares some similarities
with the Kuramoto model; however, it differs from the latter
since here each agent does not try to adjust its frequency to the
other to obtain synchronization. In contrast, when the waves
are in phase, they act to increase their phase difference.

A further novel aspect of our model is that alignment
can lead to mutual amplification of the agents’ amplitudes
(modal instability). Hence, eventually the agents will be
strong enough not only to interact between themselves, but
also to alter their “environmental averages” conditions [24],
i.e., the mean flow. This is one of the central initial mecha-
nisms by which 2D laminar shear flows are transformed into
a turbulent state. A straightforward generalization of such
wave-mean flow interaction is currently being studied by the
authors.

The interaction described here is a type of long-range in-
teraction. As illustrated in Fig. 9 the instantaneous interaction
between each pair of distant waves is not affected by the waves
sandwiched in between. However, in reality, for finite values
of the Reynolds number, viscosity may play a vital role in the
dynamics and should be represented by a short-range inter-
action [25] between the agents. Another additional piece of
reality is that shear flows in nature are generally continuously
exposed to some level of noise (both exterior and interior
due to triad interaction processes), which affects the mean
flow and the waves. Diffusive [25] and stochastic [26] pro-
cesses have already been implemented in collective dynamics
in different contexts and in nonlinear dynamical systems.
While wave-mean flow models already exist [27], there re-
mains a considerable scope towards understanding it from the
wave interactions perspective. In the near future, the authors
aim to provide a more realistic description of counterprop-
agating wave-mean flow interactions as a forced-dissipative
system.
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APPENDIX: EXTENSION OF WAVE INTERACTION
THEORY IN RAYLEIGH’S PIECEWISE SHEAR LAYER TO

A CONTINUOUS SHEAR LAYER PROFILE

1. Derivation of the multilayered equations

Here we show how Rayleigh’s piecewise shear layer,
discussed in Sec. IV, leads to the dynamical system

(1a)–(1b), and furthermore, how a shear layer with N in-
terfaces, discussed in Sec. V, leads to a more generalized
dynamical system (30a)–(30b).

We consider an incompressible, inviscid, 2D flow where
the perturbation stream function ψ (x, z, t ) and the perturba-
tion vorticity q(x, z, t ) are related via

∇2ψ = q. (A1)

As before, we assume perturbed quantities to be represented
by the Fourier ansatz f = 
{ f̂ (y, t ; k)eikx}, where k is wave
number and f could be ψ , q, or v (where v = ψx = ikψ is
the perturbation cross-stream velocity). Such ansatzes when
substituted in Eq. (A1) yield(

d2

dy2
− k2

)
ψ̂ = q̂. (A2)

The linear operator in the left-hand side is inverted to yield

ψ̂ = −
∫
B

G(y′, y; k)q̂(y′, t ; k) dy′, (A3)

where B is the domain and G(y′, y; k) is the appropriate
positive definite Green’s function, which also depends on the
boundary conditions. We consider an unbounded domain, for
which G = e−k|y−y′ |/(2k).

The evolution equation of perturbation vorticity under
linearization reads

Dq

Dt
≡ ∂q

∂t
+ U

∂q

∂x
= −v

d�

dy
. (A4)

Substitution of Eq. (A3) in Eq. (A4) yields

∂q

∂t
+ ikUq = ik

d�

dy

∫
B

G(y′, y; k)q(y′, t ) dy′. (A5)

If we assume a system with N + 1 layers, each having a
constant vorticity, then

d�

dy
=

N∑
j=1

�� jδ(y − y j ), (A6)

where �� j ≡ �(y+
j ) − �(y−

j ). The discrete spectrum solu-
tion of Eq. (A4) is then simply given by

q =
N∑

j=1

q j (t )δ(y − y j )e
ikx, (A7)

ψ = − 1

2k

N∑
j=1

q j (t )e−k|y−y j |eikx. (A8)

On expressing q j (t ) = Qj (t )eiε j (t ), substitution of Eq. (A7)
in Eq. (A5) yields

Q̇i = ��i

2

N∑
j=1

Qje
−k|yi−y j | sin εi j, (A9a)

ε̇i = −ω̂i + ��i

2Qi

N∑
j=1, j �=i

Q je
−k|yi−y j | cos εi j, (A9b)

where εi j ≡ εi − ε j and ω̂i = kUi − ��i/2. Equations
(A9a)–(A9b), signifying Rossby wave interactions in a
general shear layer shown in Fig. 9, are a special case of
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FIG. 11. (a) Dispersion relation, i.e., growth rate versus wave number for Rayleigh (gray) and scaled hyperbolic tangent shear layer (black).
(b) Normalized perturbation vorticity for Rayleigh (black and white contour lines; black denotes positive and white denotes negative) and scaled
hyperbolic tangent shear layer (filled colored contours). (c) Normalized perturbation streamfunction following the same color scheme as in
panel (b).

Eqs. (30a)–(30b). Furthermore, Eqs. (A9a)–(A9b) can be
straightforwardly applied to Rayleigh’s shear layer problem
discussed in Sec. IV by taking N = 2 and the correct ��i

values (i.e., that of Rayleigh’s shear layer).

2. Comparison of instabilities in piecewise and continuous
shear layers

Rayleigh’s shear layer profile, discussed in Sec. IV, is
shown in Fig. 10 with a thin solid line. It is assumed to be an
approximation of the more realistic, hyperbolic tangent shear
layer. While Rayleigh’s profile can be understood using two-
wave interactions, the hyperbolic tangent shear layer is more
complex and requires many (technically infinite) wave inter-
actions. Yet the basic mechanism of wave synchronization
and resonance remains the same, as described by Eqs. (A9a)–
(A9b). While the unstable region for Rayleigh’s profile is 0 <

k < 0.64 [see Fig. 11(a)], the same for the hyperbolic tangent
shear layer, i.e., U = tanh(y) is 0 < k < 1 (not shown in the
figure, but see Drazin and Reid [19]). This discrepancy is
mainly due to an improper scaling, as discussed in Carpenter
et al. [9]. The extrema of the base vorticity gradient for the
shear layer U = tanh(by)/ tanh(b) peaks at y = ±1 (shown
in Fig. 10 by thick solid lines), where b = 0.66, unlike that

of U = tanh(y), which peaks at y = ±0.66 (not shown in the
figure). Additionally, the shear profile U = tanh(by)/ tanh(b)
attains U (±1) = ±1. Hence the Rayleigh’s piecewise shear
layer profile is expected to provide a far more accurate com-
parison with U = tanh(by)/ tanh(b) than with U = tanh(y).

For any k, the normal mode growth rate, λNM
r of a shear

layer can be obtained via standard eigenvalue analysis. In
Fig. 11(a) we compare the dispersion relation of the two pro-
files in question and observe a very good match. In Fig. 11(b)
we compare the vorticity perturbations of the unstable modes
corresponding to k = 0.38 of the two profiles. For this value
of k, the scaled smooth shear layer and Rayleigh’s shear
layer have the same growth rate. In Rayleigh’s profile, the
perturbation vorticity is localized at y = ±1, as expected for δ

functions (unlike the smooth shear layer, which is more spread
out). However, the perturbation stream functions obtained by
inverting the corresponding perturbation vorticities are quite
similar, as is evident from Fig. 11(c). Moreover, the phase
difference ε∗ for these two profiles is in good agreement and
has a value of ≈0.6π . This conclusively shows that Rayleigh’s
profile, where phase locking of two Rossby waves provides
an accurate description of the instability mechanism, provides
a very good minimal model description of the smooth shear
layer.
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