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The interacting vorticity wave formalism for shear flow instabilities is extended here
to the magnetohydrodynamic (MHD) setting, to provide a mechanistic description
for stabilising and destabilising shear instabilities by the presence of a background
magnetic field. The interpretation relies on local vorticity anomalies inducing a
non-local velocity field, resulting in action at a distance. It is shown here that
the waves supported by the system are able to propagate vorticity via the Lorentz
force, and waves may interact. The existence of instability then rests upon whether
the choice of basic state allows for phase locking and constructive interference
of the vorticity waves via mutual interaction. To substantiate this claim, we solve
the instability problem of two representative basic states, one where a background
magnetic field stabilises an unstable flow and the other where the field destabilises a
stable flow, and perform relevant analyses to show how this mechanism operates in
MHD.
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1. Introduction
Shear flows are ubiquitous in fluid systems, and shear flow instability, nonlinear

development and its transition into turbulence remains an active area of research to
the present day. We focus here on magnetohydrodynamic (MHD) shear instabilities,
relevant to astrophysical systems such as, for example, the solar tachocline, the
magnetopause and the atmospheres of hot exoplanets. In particular, we are interested
in the physical mechanisms leading to ideal parallel shear instabilities in MHD.

The argument generally is that, in the presence of a background magnetic field
that has a component parallel to the background flow, fluid instabilities have to do
work to bend field lines; thus the presence of a background magnetic field should
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FIGURE 1. (Colour online) A pictorial representation of the wave interaction mechanism
for the case of two Rossby waves. Here, q ∼ −1Qη, where q is vorticity, η is
displacement, and 1Q is the magnitude of the vorticity jump of the background flow
profile. Taking into account the sign of 1Q at each jump, the q anomalies resulting from
the η distribution are labelled accordingly. The top wave has a self-induced propagation
to the left relative to the mean flow, and vice versa for the bottom wave, and both waves
propagate counter to the mean flow. The waves interact with each other via the non-local
velocity field induced by local vorticity anomalies, and the induced velocities decay with
distance from vorticity anomalies, represented here by the length of the arrows. The waves
may be held steady owing to counter-propagation relative to the mean flow, together
with the mutual interaction between the waves, resulting in a phase-locked configuration.
The waves can then constructively interfere and lead to instability. A phase difference
regime diagram is given on the left, where the phase difference is defined as 1ε =
ε2− ε1, the lower wave displacement relative to the upper wave; the configuration here has
1ε =−π/2.

be stabilising. This is generally found to be true in planar geometry when the
background magnetic field is uniform (e.g. Chandrasekhar 1981; Biskamp 2003).
However, this argument does not account for the observed destabilisation of
hydrodynamically stable flows in the presence of spatially varying background
magnetic fields (e.g. Stern 1963; Kent 1966, 1968; Chen & Morrison 1991; Tatsuno
& Dorland 2006; Lecoanet et al. 2010), or the fact that a uniform field can destabilise
some wavenumbers that are hydrodynamically stable (e.g. Kent 1966, 1968; Ray &
Ershkovich 1983). Further, in two-dimensional spherical geometry (no radial motion),
a flow close to the observed solar differential rotation is hydrodynamically stable, but
is destabilised by the presence of an azimuthal background magnetic field varying
in latitude (e.g. Gilman & Fox 1997; Gilman & Cally 2007). To reconcile these
contrasting effects, the negative-energy wave interpretation (e.g. Cairns 1979), based
on wave resonance and energetic arguments, is sometimes invoked (e.g. Ruderman &
Belov 2010). The aim here is to provide an intuitive mechanistic interpretation that
reconciles the contrasting influences of the magnetic field on MHD shear instabilities.

We present here an interpretation of shear instabilities in terms of interacting
vorticity waves. This interpretation includes as a special case the counter-propagating
Rossby waves (CRW) mechanism (e.g. Bretherton 1966; Hoskins, McIntyre &
Robertson 1985), a mechanism well known in geophysical fluid dynamics, and
which has been argued by Baines & Mitsudera (1994) to be an equivalent approach
to the negative-energy wave explanation for shear instability. A basic schematic of the
mechanism is recalled here for the Rossby wave case in figure 1, with a description
of the mechanism given in the caption.
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The main ingredients required for instability in this interpretation are phase locking
and constructive interference, achieved via counter-propagation of waves relative
to the mean flow, action at a distance by the non-local velocity field induced by
local vorticity anomalies, and an appropriate phase shift between the two waves.
Normal mode instability may also occur whenever the waves are phase-locked with
relative phase difference (defined here in terms of wave displacement) satisfying
1ε ∈ (−π, 0). If the self-propagation speed of each wave is large compared to
its local mean flow, the action-at-a-distance interaction should hinder the waves’
propagation speed to maintain phase locking. This occurs when 1ε ∈ (−π/2, 0), and
generally characterises long wavelength dynamics. By contrast, the self-propagation
speed of short wavelength waves counter to the mean flow is generally weak, hence
instability is obtained when the waves help each other’s propagation to overcome the
background flow while growing, and this occurs when 1ε ∈ (−π,−π/2). Essentially,
the mechanism may be summarised as ‘the induced velocity field of each Rossby
wave keeps the other in step, and makes the other grow’ (Hoskins et al. 1985). For
more details, we refer the reader to the recent review of Carpenter et al. (2013) and
references therein.

In the case of figure 1, we have illustrated the fundamental mechanism using
Rossby waves, but this is not the only possibility. As long as we have wave modes
that counter-propagate against the mean flow, and they propagate vorticity, it is
perfectly possible for a configuration displayed in figure 1 to occur. Harnik et al.
(2008), Rabinovich et al. (2011) and Guha & Lawrence (2013) have shown that, in
the context of shear instabilities in stratified fluids, displacement of an interface leads
to an induced buoyancy field, which in turn induces an appropriate vorticity field via
baroclinic torque; thus Rossby–gravity waves may also propagate vorticity. When two
vorticity and/or density interfaces are present, the interaction of the relevant wave
modes leads to instability of the Kelvin–Helmholtz type (two vorticity interfaces;
e.g. Drazin & Reid 1981; Baines & Mitsudera 1994), Holmboe type (essentially
one vorticity and one density interface; Holmboe 1962; Baines & Mitsudera 1994)
and the Taylor–Caulfield type (two density interfaces; Taylor 1931; Caulfield 1994).
For recent reviews and studies of shear instabilities in stratified fluids and their
interpretation in terms of wave interactions, see Balmforth, Roy & Caulfield (2012),
Carpenter, Balmforth & Lawrence (2010), Carpenter et al. (2013) and Guha &
Lawrence (2013).

We show here that a similar interpretation holds in MHD. Wave displacement
changes the magnetic field configuration, and since the Lorentz force is generally
rotational, this in turn generates vorticity anomalies, so Alfvén waves may propagate
vorticity. We can thus use the vorticity wave interaction framework as an interpretation
for MHD shear instabilities. Furthermore, this dynamical framework explains why we
have stabilisation or destabilisation by the magnetic field: the choice of basic state
and parameter values affects the properties of the wave modes, and the presence of
instability depends on whether supported wave modes can phase-lock and achieve
mutual amplification.

Previous works on this topic have, for elucidation purposes, mainly considered
piecewise-linear basic states with interfacial wave solutions of the form q(x, y, t) =
q̂δ(y− L)eik(x−ct), where y= L is the location of ‘jump’ in the profile. If one can show
that the vorticity generation is non-zero only at these jumps, then interfacial wave
solutions are exact solutions. A small number of jumps in the basic state results in a
dispersion relation that is a low-order algebraic equation with closed-form solutions.
Further analysis of the solutions may be carried out in a relatively straightforward
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manner (e.g. Rabinovich et al. 2011). One notable exception to this exactness in
the hydrodynamic setting is the Charney problem (e.g. Heifetz et al. 2004b), where
the presence of differential rotation β results in non-localised vorticity generation. A
similar phenomenon occurs for the MHD case. Although this does not pose a problem
for the numerical computation of the eigenvalues and eigenfunctions, extra care is
required when interpreting the results and the physical mechanism. This subtlety
is explained in detail here, and the regimes where the interfacial wave assumption
is a reasonable approximation to the full solution are explored accordingly for the
instability problems we consider.

The layout of this article is follows. We provide the mathematical set-up in § 2,
and explain how even simple Alfvén waves propagate vorticity via the Lorentz
force. Additionally, we demonstrate the non-local nature of vorticity generation. For
conceptual understanding of how waves in the system propagate vorticity, we consider
the dynamics of interfacial waves in § 3. To demonstrate the instability mechanism,
we solve the instability problem for two piecewise-linear basic states, for comparison
with previous work employing the interacting vorticity wave formalism, and to test
the performance of the interfacial wave assumption. In § 4, we consider the case
where a background magnetic field stabilises the flow, taking the background flow to
be the Rayleigh profile demonstrated in figure 1, together with a uniform background
magnetic field. We first give details for the numerical method we employ, then analyse
in some detail the full solution, providing plots of eigenfunctions and showing how
the schematic in figure 1 is modified by MHD effects. Analytic solutions resulting
from the interface assumption are derived, compared with the full solutions, and
analysed accordingly. We give a similar account in § 5 for the case where a linear
shear flow is destabilised by a spatially varying background magnetic field. We
conclude and discuss our results in § 6.

2. Mathematical formulation
The crux of the mechanism displayed in figure 1 is that waves supported by the

system and choice of basic state propagate vorticity, and their interaction leads to
instability. In this section, we provide the general mathematical formulation, and
explain how even simple Alfvén waves, supported when the background flow and
field are uniform, may propagate vorticity via the Lorentz force. We consider the
dynamics of waves when the flow and field are sheared in the next section.

2.1. Two-dimensional MHD and action of Lorentz force
We are interested here in ideal MHD instabilities. The homogeneous incompressible
MHD equations are

∂u
∂t
+ u · ∇u=− 1

ρ0
∇p+ 1

µ0ρ0
j∗ × B∗, (2.1a)

∂B∗

∂t
+ u · ∇B∗ = B∗ · ∇u, (2.1b)

∇ · u= 0, ∇ · B∗ = 0. (2.1c,d)

Here, j∗ = ∇ × B∗ is the current. In Cartesian coordinates, an analogue of Squire’s
theorem holds (see e.g. Hughes & Tobias 2001, and discussion therein), and thus
we may formulate the problem in two dimensions. The domain is taken to be the
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FIGURE 2. A pictorial representation of how the vorticity is generated by the Lorentz
term j × B=∇ · ( jB) in two-dimensional incompressible MHD; see text for details.

(x, y) plane, with periodicity in x, and as yet unspecified in y. The incompressibility
condition allows us to write the velocity u and magnetic field B= B∗/√µ0ρ0 (where
µ0 is the permeability of free space and ρ0 is the constant density) in terms of a
streamfunction ψ and magnetic potential A, defined here as u = ez × ∇ψ and B =
ez ×∇A. From this, the vorticity q= ez · ∇× u and current j= ez · ∇× B satisfy the
relations q=∇2ψ and j=∇2A, and (2.1) take the equivalent form

Dq
Dt
=∇ · ( jB),

DA
Dt
= 0. (2.2a,b)

To see how the Lorentz force ∇ · ( jB) results in rotational motion, we suppose that
we have, for the sake of argument, B0ex with B0 = const.> 0, and

j(x0, y0)ez = j0ez, j(x1, y1)ez = j1ez, (2.3a,b)

where j1 > j0, x1 > x0 and y1 = y0. This is a scenario where ∂( jbx)/∂x> 0, and note
here that j and bx are ‘full’ quantities, as we have not yet linearised about a basic state.
In general, the Lorentz term is F= j × B, and, with the right-hand-screw convention,
the current distribution above produces

F(x0, y0)= F0ey, F(x1, y1)= F1ey, (2.4a,b)

with F1 > F0 > 0. A material line connecting (x0, y0) and (x1, y1) is rotated
anticlockwise, i.e. this gives us a positive vorticity anomaly, and is consistent
with positive forcing in (2.2); this is shown pictorially in figure 2. An analogous
interpretation explains how ∂( jby)/∂y> 0 results also in positive vorticity (e.g. rotate
figure 2 anticlockwise by π/2).

2.2. Linearisation and Alfvén wave dynamics

We now linearise (2.2) about a general basic state U(y)ex and B(y)ex (and thus Q=
−∂U/∂y and J =−∂B/∂y), which results in the system of equations(

∂

∂t
+U

∂

∂x

)
q=−∂Q

∂y
∂ψ

∂x
+ B

∂j
∂x
+ ∂J
∂y
∂A
∂x
, (2.5a)(

∂

∂t
+U

∂

∂x

)
A= B

∂ψ

∂x
, (2.5b)

where all quantities with no overbars are perturbation quantities. We note that
B(∂j/∂x) and (∂J/∂y)(∂A/∂x) are the linearised forms of ∂( jbx)/∂x and ∂( jby)/∂y,
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(a)  (b)

FIGURE 3. (Colour online) Pictorial representation for wave dynamics associated with
B(∂j/∂x), with B> 0 without loss of generality. The upper and lower panels are the η and
q initial conditions, where (a) η∼q and (b) η∼−q. The solid black line shows tendencies
associated with the chosen initial condition; grey dashed line (blue online; lower panels)
is the influence of the η profile on q; and grey dashed line (red online; upper panels) is
the influence of the q profile on η. See text for description.

respectively, so they result in vortical motion as in figure 2. The cross-stream
displacement η is given by

v = ∂ψ
∂x
=
(
∂

∂t
+U

∂

∂x

)
η, (2.6)

and, substituting this into (2.5b) and integrating results in the relation

A= Bη+ A0(y). (2.7)

We will take the non-advective contribution A0 associated with non-conservative
effects to be zero for the rest of this work.

For simple Alfvén waves (e.g. Biskamp 2003), we take the case U = 0 and B =
constant > 0 without loss of generality. With this, the governing equations become
∂q/∂t= B(∂j/∂x) and ∂η/∂t= ∂ψ/∂x. We observe that η∼ A from relation (2.7), i.e.
a positive displacement is correlated with a positive A anomaly. Furthermore, since
∇2A = j and the Laplacian is a negative definite operator, this implies the relation
η∼−j.

One main difference between Alfvén waves and Rossby waves is that the former
are governed by a second-order rather than a first-order differential equation. Thus two
initial conditions need to be specified, in this case on q and η. In figure 3 we consider
the cases where the initial conditions (in black solid) are in phase and in antiphase.
Focusing on figure 3(a) where η∼ q, since η∼−j, we have the appropriate B(∂j/∂x)
at the wave nodes, which thus results in the appropriate ∂q/∂t tendencies for the q
configuration in the lower panel (in grey dashed; blue dashed online); this moves the q
profile to the right. At the same time, the q initial condition together with the relation
ψ ∼−q implies a velocity field that moves the η profile also to the right (see also the
waves in figure 1), and thus the whole wave propagates in concert to the right. An
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analogous argument for figure 3(b) where the initial condition has η∼−q shows the
wave propagating instead to the left. A superposition of these equal-amplitude right-
and left-going waves results in a standing wave configuration (see e.g. appendix B of
Harnik et al. 2008). It may be seen from the resulting linearised equations that if we
consider modal solutions of the form eik(x−ct) (we take the y wavenumber to be zero for
simplicity), ca =±B for Alfvén waves, and c> 0 implies we have η∼−j∼ q, whilst
c < 0 implies that η ∼ −j ∼ −q. These relations are consistent with the schematic
presented in figure 3(a,b) respectively. More generally, as long as the η and q initial
conditions are not in quadrature with each other, we obtain travelling wave solutions
associated with the B(∂j/∂x) term.

2.3. Green’s function formulation
Wave interaction via action at a distance may be represented mathematically by a
Green’s function formalism, employed by previous authors (e.g. Harnik et al. 2008).
Noting that j=∇2A and ψ =∇2q, and taking the domain to be x-periodic, a Fourier
transform leads to

j=
(
−k2 + ∂2

∂y2

)
A, q=

(
−k2 + ∂2

∂y2

)
ψ, (2.8a,b)

where k denotes the x wavenumber. Equations (2.8) may be formally inverted to give(
A(y)
ψ(y)

)
=
∫

G(y, y′)
(

j(y′)
q(y′)

)
dy′, (2.9)

where G(y, y′) is a Green’s function chosen to satisfy the boundary conditions. Then,
with the governing equations (2.5a) and (2.6), and substituting for the appropriate
terms using relations (2.7) and (2.9), the problem is completely specified in terms of
q and η, and all intermediate effects from changes in A and j are implicit.

For the piecewise-linear profiles that we consider in the subsequent sections, we
note that this approach of using Green’s functions guarantees the continuity of
the total pressure and displacement everywhere. The kinematic condition for the
continuity of the interface is already invoked in (2.6). From the y component of the
linearised momentum equation, we observe that the inverted v and by from q and j
are guaranteed to be continuous by properties of the Green’s function, so the total
pressure p is also continuous since U and B are continuous.

2.4. Generation of vorticity away from interfaces
If the background profiles are piecewise-linear, and, without loss of generality, a
‘jump’ is located at y= L, then q∼ q̂δ(y− L) is exact if it can be shown that vorticity
generation is non-zero only at that location. One notable exception, however, is the
Charney problem (e.g. Heifetz et al. 2004b), where vorticity generation is non-local,
and we demonstrate here that this occurs in the MHD case also. To show this, we
take the Laplacian of (2.5b), and the resulting linearised equation for j is given by(

∂

∂t
+U

∂

∂x

)
j=
(
∂Q
∂y
+ 2Q

∂

∂y

)
∂A
∂x
+ B

∂q
∂x
−
(
∂J
∂y
+ 2J

∂

∂y

)
∂ψ

∂x
. (2.10)

Then, even if (∂Q/∂y, ∂J/∂y) = (1Q, 1J)δ(y − L), with ( j, q) ∼ ( ̂ , q̂)δ(y − L) at
t = 0, if Q and J are non-zero at y 6= L, this generates non-zero j away from y= L,
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which in turn results in non-zero q away from y= L from the vorticity equation. So
δ-function solutions are generically not self-consistent solutions (one example where δ-
function solutions are exact solutions is when B is zero everywhere except at isolated
locations, e.g. current sheet profiles), thus interfacial wave solutions fail to capture
all the dynamics, since we are setting to zero contributions away from the interfaces
and we do not know a priori whether the neglected contributions are significant to
the dynamics. Further, non-local generation of vorticity implies that critical layers will
play a role in the dynamics (e.g. Rabinovich et al. 2011).

Although we will choose q and η as the fundamental variables for the bulk of
the discussion, this is not the only possibility. It turns out there are some numerical
advantages in utilising q and j as the variables when computing for the full numerical
solutions. The two choices are of course equivalent as far as the full solution is
concerned. A brief discussion of the (q, j) equations is given in appendix B and
shows how they differ when interfacial wave dynamics are the focus.

3. Interfacial wave dynamics

In this section, we assume solutions in q and j take the form of δ-functions to
elucidate how we may expect waves to propagate vorticity. We do this primarily
for conceptual progress, to provide links between the wave eigenstructure and the
underlying physics.

We consider an unbounded y domain; the Green’s function for this setting is given
by

G(y, y′)=− 1
2k

e−k|y−y′|. (3.1)

We take piecewise-linear U and B (thus piecewise-constant Q and J), with

∂Q
∂y
=1Qδ(y− L),

∂J
∂y
=1Jδ(y− L). (3.2a,b)

Equations (2.5a) and (2.6) then become(
∂

∂t
+ ikU

)
q= ik[−1Qψδ(y− L)+ Bj+1JAδ(y− L)], (3.3a)(

∂

∂t
+ ikU

)
η= ikψ. (3.3b)

This set of resulting equations bears some formal resemblance to the analogous
stratified problem (e.g. Harnik et al. 2008); this formal analogy is detailed in
appendix A.

Bearing in mind the limitations already discussed in § 2.4, we consider solutions of
the form

q= q̂ e−ikctδ(y− L), j= ̂ e−ikctδ(y− L). (3.4a,b)

With the inversion relation (2.9), the Green’s function (3.1) for this domain, and taking
modal solutions for ψ and A, we obtain the relations

ψ(L)=− q̂
2k
, A(L)=− ĵ

2k
. (3.5a,b)
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Using A= Bη from (2.7), this results in ̂ =−2kB(L)η(L). Together, equations (3.3)
become

(U − c)q̂= 1Q
2k

q̂− 2kB
(

B− 1J
2k

)
η, (U − c)η=− 1

2k
q̂, (3.6a,b)

where all the functions associated with the basic state are taken to be evaluated at y=
L. Combining the two equations in (3.6) and solving the resulting quadratic equation
in (q̂/η), the eigenstructure and the dispersion relation read

q̂± = 2k(c± −U)η±, (c± −U)=−1Q
4k
±
√(

1Q
4k

)2

+ B
(

B− 1J
2k

)
. (3.7a,b)

The ‘plus’ branch is the one where the plus sign is taken, and analogously for the
‘minus’ branch. We observe that, when the waves are neutral, the plus branch is
associated with a wave propagating to the right, relative to the mean flow, and vice
versa for the minus branch.

3.1. A physical description of interfacial wave dynamics
The eigenstructure (3.7) tells us how q is related to η directly from the equations.
To understand the relation in terms of changes in the magnetic field configuration
and how it results in vorticity anomalies and wave propagation, it is informative to
consider how the individual components act. In (3.7), the presence of the 1Q, B2

and B1J terms is associated with the first, second and third terms on the right-hand
side of (2.5a), respectively. The first term of the three is the standard Rossby wave
mechanism, for which the restoring force comes from the background vorticity
gradient. The wave propagation is that already described in figure 1. The second
term is essentially the Alfvén wave case described in the previous subsection; the
eigenstructure relation (3.7) may be seen to be consistent with the schematic presented
in figure 3.

The third term on the right-hand side of (2.5a) is

∂J
∂y
∂A
∂x
= ∂J
∂y

by = B
∂J
∂y
∂η

∂x
, (3.8)

upon using the relation (2.7); we again take B> 0 without loss of generality. We show
in figure 4 a schematic depiction of how the by(∂J/∂y) term acts from the η initial
condition. In figure 4(a), we have a case where B1J < 0. We still have η∼−j (see
paragraph just after (2.7)), and the distribution of by at the nodes of the wave (in
black) then follows from the relation by = B(∂η/∂x). With this, the initial condition
results in a by(∂J/∂y) distribution that in turn implies ∂q/∂t tendency at the nodes (in
grey; blue online). This configuration is exactly like the one in figure 3, and thus we
have travelling wave solutions. If instead we have B1J>0 as in figure 4(b), the ∂q/∂t
tendencies at the nodes are reversed. Arguments similar to those used in figure 3 then
show that the η and q initial conditions propagate in opposite directions to each other
unless they are in quadrature, for which no travelling wave configuration is possible.

When the η and q initial conditions are in quadrature, this implies that we have
a growing/decaying standing wave configuration. For the hydrodynamic stratified
setting, the schematic presented in figure 4(b) is formally similar to an interpretation
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(a)

(b)

FIGURE 4. (Colour online) Pictorial representation for wave dynamics associated with
by(∂J/∂y), the third term on the right-hand side of (2.5a), with (a) B1J < 0 and
(b) B1J > 0; without loss of generality, B> 0. The initial conditions are given in black;
and the resulting tendencies arising from the choice of initial conditions are given in grey
(blue online). See text for more details.

of Rayleigh–Taylor instability (e.g. Harnik et al. 2008). Although this suggests a
local instability even in the absence of a background flow (this is not impossible,
since magnetostatic profiles can suffer ideal MHD instabilities, e.g. chapter 19 of
Goldston & Rutherford (1995)), a theorem due to Lundquist states that, in the case
where the background magnetic field in magnetohydrostatic equilibrium has straight
field lines, the perturbation energy cannot grow, and the background state is stable
(Lundquist 1951, paragraph of equation 29). This stability condition is satisfied in
planar geometry by B(y). The prediction of instability at the local level when the state
is globally stable presumably stems from the fact that we are considering isolated
δ-function solutions for the purposes of elucidating the physics linking vorticity
anomalies with wave displacement. The neglected contributions and the resulting
mutual interactions will presumably suppress this apparent instability.

In the presence of a background shear flow, however, instability is possible. As
highlighted in Stern (1963), taking a profile with B1J< 0 everywhere in the domain
results in instability when the background flow is stable in the hydrodynamic setting.
Similar investigations in planar geometry of the destabilising nature of the magnetic
field have mainly considered profiles where B1J < 0 in the domain, so here, for one
of the examples, we also take a basic state that satisfies this condition.

4. Unstable profile stabilised by uniform magnetic field

Having demonstrated how we expect waves to propagate vorticity anomalies, we
now consider two instability problems to demonstrate the instability mechanism, one
where the field stabilises an unstable flow, and the other where the field destabilises a
stable flow. The two basic states are chosen so that there is only one non-dimensional
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parameter, given by M= B̃/Ũ, where the tildes denotes the relevant Alfvén speed and
velocity scales. We note that, from linear analysis, there is a stability theorem that
states that |B| > |U| pointwise everywhere guarantees the absence of exponentially
growing instabilities (e.g. Hughes & Tobias 2001); the basic states are tailored so that
the case M > 1 is equivalent to the aforementioned condition, with M = 1 the case
where we have equality.

We first provide details of the numerical method we employ to obtain our full
solutions, then analyse these solutions and explain how the instability mechanism
detailed in figure 1 is modified by MHD effects. To test the validity of taking
only a small number of interfaces, we consider the approximated problem where
only two interfaces are taken; closed-form solutions may be obtained from the
resulting low-order algebraic system, and these are compared with the full solutions
accordingly.

4.1. Numerical method
The governing equations depend on the choice of variables we employ for the
numerical scheme. If we describe the dynamics in terms of q and η, the governing
equations are (2.5a) and (2.6). Upon using j = ∇2A = ∇2(Bη), where we have used
the identity (2.7), and with ψ = ∫ q(y′)G(y, y′)dy′, the resulting system of equations
(2.5a) and (2.6) may be written in discretised form as

∂

∂t

(
q
η

)
=−ik

(
U +Q

′
G −B

2
(−k2I + D2)+ 2BJD1

−G U

)(
q
η

)
, (4.1)

where, for example, U = U(yi) × I, a prime denotes a y derivative, and D1,2
are the appropriate discretised differential operators for y derivatives. Taking
uniform grid spacing 1y, we take, for example, ∂Q/∂y = 1Q/1y at the yj entry
when ∂Q/∂y = 1Qδ(y − yj). If a quantity J is discontinuous at yj, we take
J(yj) = [J(yj−1) + J(yj+1)]/2. The discretised Green’s function is given by (Harnik
et al. 2008)

Gm,n =−1y
2k

e−k|ym−yn|; (4.2)

this is a dense matrix. The system may be advanced in time accordingly if one
considers an initial value problem in the context of non-modal instabilities (e.g.
Constantinou & Ioannou 2011). For (q, η) = (q̃, η̃) e−ik(x−ct), the eigenvalues and
eigenvectors of the system (4.1) are the normal mode solutions.

It turns out that it is numerically more stable to solve the problem in (q, j) variables;
thus we couple (2.5a) with (2.10) instead of (2.6). A similar manipulation using A=∫

j(y′)G(y, y′) dy′ results in

∂

∂t

(
q
j

)
=−ik

(
U +Q

′
G −B− J

′
G

−B+ J
′
G+ 2JG′ U −Q

′
G− 2QG′

)(
q
j

)
, (4.3)

where, in this case, G′ is the derivative of the Green’s function, with discretised form
defined to be

G′m,n =


+(1y/2)e−k(ym−yn), ym > yn,

−(1y/2)e+k(ym−yn), ym < yn,

0, ym = yn.

(4.4)
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The value of 0 is taken at ym= yn because the wave supported on ym does not induce
any u or bx at ym. The lack of derivative operators in this latter matrix (4.3) results in a
lower condition number when compared to the (q, η) formulation in the test examples
we have considered. The two formulations are of course equivalent, and the relevant
eigenfunctions may be obtained from both formulations; here, the numerical results
presented were obtained by solving (4.3).

Results presented here have been subjected to domain size and resolution tests.
A domain size of y ∈ [−5, 5] was employed. A resolution of 1y = 10−2 (in
non-dimensional units) was found to be sufficient for modes away from marginality,
while for modes close to marginality, a resolution of 1y = 5 × 10−3 was employed
instead to avoid the appearance of spurious instabilities. The linear algebra problem
was solved using the eig(A) command in MATLAB, and we pick out the mode with
the largest imaginary part. Sample tests shows the most unstable eigenvalues obtained
are well separated from the rest of the spectrum and, further, occur in conjugate pairs
(a more general result for ideal instabilities, which may be shown via consideration
of the adjoint form of the governing equation (see e.g. Drazin & Reid 1981)).

4.2. Basic state and full numerical solution
We consider first the Rayleigh profile as the background flow, with a uniform
background magnetic field. In dimensional form, we take

U(y)=


ΛL, y> L,
Λy, |y|< L,
−ΛL, y<−L,

B(y)= B0. (4.5)

For this problem, J = 0 and ∂J/∂y= 0. Scaling by

B̃= B0, T̃ = 1
Λ
, L̃= L, Ũ =ΛL, (4.6a−d)

the resulting non-dimensional parameter is M = B̃/Ũ, a ratio of the typical Alfvén
velocity and the shear velocity, effectively a measure of the field strength, and B→M
and j→ Mj in (4.3) (as well as (4.1)) upon rescaling. Values M > 1 correspond to
the regime where there are no linear normal mode instabilities. The linear stability
properties of this basic state have been studied by Ray & Ershkovich (1983), who
focused on computation of the growth rates of the instabilities via a shooting method,
but not on the structure of the eigenfunctions.

We show in figure 5 the growth rates of the full solution (kci)full over parameter
space; we note that cr = 0 for all unstable modes here, a result arising from the
symmetries possessed by the basic state. The calculated growth rates are in agreement
with the results documented in Ray & Ershkovich (1983) after taking into account
the different scalings used. The explanation for the shape of the instability region
is that, at M = 0, there is no phase locking for short waves since they are too
slow to overcome the background advection. At moderate M, these short waves are
now sufficiently fast (from the non-dimensional version of (3.7)) to overcome the
background advection, become phase-locked and constructively interfere. At large
enough M, all waves become too fast, and phase locking is not possible.
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FIGURE 5. (Colour online) Growth rates (kci)full of the full numerical solution associated
with the basic state (4.5), with the thick (red online) curve denoting the stability boundary.
Here, cr = 0 for all unstable modes. The (red online) cross and circle correspond to the
parameter location associated with the eigenfunction displayed in figure 6(a,b) respectively.
The resonance condition is plotted as the dashed (blue online) line.

Sometimes it is informative in such investigations to plot the so-called resonance
conditions (e.g. Carpenter et al. 2013). These are the locations where the counter-
propagating interfacial waves have matching phase speeds, taking into account
advection by the background flow. In this setting, these are the values of k where

c−1 (M, k)= 1+ c−ra(M, k) and c+2 (M, k)=−1− c−ra(M, k) (4.7a,b)

are equal for some given M, with c−ra=−(1/4k)−√(1/4k)2 +M2 the non-dimensional
phase speed of the counter-propagating waves; the signs in (4.7) take into account the
fact that c−ra is negative. The idea is that, if interacting interfacial counter-propagating
waves are the only things contributing to the dynamics, then the location where the
resonance condition is satisfied should be near to the location of optimal growth; if
this is not the case, it shows that other dynamics (e.g. critical layers, pro-propagating
modes) are important. It also gives an indication of where in parameter space the
interaction required for instability can be expected, especially at large k. We overlay
the location where the resonance condition is satisfied in figure 5, and we see that the
agreement with the location of optimal growth is only reasonable for small M, so we
expect dynamics away from the interface not to be negligible at larger M and also at
larger k. This is confirmed by plots of the eigenfunctions; we show in figure 6 two
eigenfunctions, one configuration that is generic for parameter values away from the
stability boundary, and one at the same wavenumber, but at increased M, and is a
sample configuration for a case close to marginality. The parameter choices are given
by the (red online) cross and circle in figure 5, respectively.

In figure 6(a), the eigenfunction configuration is generic in that the dominant
contributions to vorticity come from the two interfaces at y=±1, and the contributions
in the |y| 6= 1 region are comparatively small (note the greyscale (colour) axis scales
of the corresponding panels). The outer two vorticity contributions have a phase
shift that is close to π/2 (0.25 in the normalised units used in the figure), and
the middle tilted structure has vorticity contributions that have opposite signs in
between two like-signed vorticity contributions from the interface. The vorticity
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FIGURE 6. (Colour online) Representative eigenfunctions (normalised by the maximum
absolute value of q) of the profile given in (4.5), both for k=0.4, but with (a) M=0.5 and
(b) M=0.9. The shading (red and blue online) is for positive and negative q (respectively),
and η is plotted as labelled contours; note the difference in the colour scales used between
the panels. The y scale is continuous between the panels (note the displacement contours
are continuous in magnitude) but is not linear for display purposes.

eigenfunction is, going from top to bottom, in antiphase, in quadrature and in phase
with displacement, i.e. q∼ (−η,−iη,+η), respectively. The outer two waves are really
counter-propagating vorticity waves, and the inner wave resembles a standing wave.
We have further carried out a decomposition of the vorticity eigenfunction into its
constituents using (2.5a); in this case, the non-zero terms are −(∂ψ/∂x)(∂Q/∂y) and
B(∂j/∂x), divided by U− c. At the interface locations, the vorticity contribution comes
from both terms, with the −(∂ψ/∂x)(∂Q/∂y) term being the dominant contribution;
the effect of the B(∂j/∂x) contribution is to alter the magnitude and the phase
difference between the two waves.

Figure 6(a) is represented schematically in figure 7. With the configuration depicted,
we see that the presence of the middle standing wave counteracts the effects of
the vorticity anomalies associated with the outer counter-propagating waves. If we
were to make the interface assumption, we would neglect the contributions away
from the interfaces and remove this centre contribution, and we would expect to
over-estimate (i) the growth rates and (ii) the propagation speed, the region where
phase locking is possible, and thus the size of the instability region. We would
expect the over-estimation to be most significant when the field strength is large,
and for short waves. This is because the interaction decreases exponentially with
wavenumber, so the overall constructive interference between the counter-propagating
waves is weaker for short waves than for long waves, and it is short waves that are
too slow to overcome the background advection.

The phase relation for the middle contribution q ∼ −iη may be obtained by
considering the vorticity equation (2.5a). Away from y = ±1, we have, for this
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FIGURE 7. (Colour online) Schematic of how the critical layer contribution plays a role
in the dynamics. Without the centre contribution (denoted online by the green parts), the
dynamics of the two waves (q∼−η and q∼+η) are as in figure 1. The centre wave acts
as a standing wave with q∼−iη, with a resulting vorticity configuration as depicted in
the figure. Then it is seen that the extra contributions act against the vorticity anomalies
associated with the counter-propagating waves, and is thus a stabilising effect.

problem,

q= M2j
(U − cr)− ici

. (4.8)

We may suppose that q is likely to be maximised at the location where U − cr = 0,
which is y= 0 here since cr = 0, resulting in the relation q∼ iM2j/ci. From relation
(2.7), we have j∼∇2η, and so q∼−iM2η/ci, as required. This is analogous to what
was found in the stratified setting for Rabinovich et al. (2011). The effect of the
critical level is expected to be more pronounced when we are near marginality.

As we approach marginality via increasing k and/or increasing M, the tilting of the
middle structure increases, becomes thinner in the cross-stream extent, and eventually
splits into three tilted structures. A sample case for which we approach marginality
by increasing M is shown in figure 6(b). The first thing to note is that vorticity
generation is significant at the location where U(y) − cr = 0, but also at around
y = ±M. The mechanistic interpretation for instability and stabilisation, however,
is not significantly altered. There is perhaps some cancellation of the contributions
due to the tilted structures, but, schematically, we still have two counter-propagating
waves, with a standing wave in between that counteracts the vorticity contributions
associated with the counter-propagating waves, again as in figure 7.

The structures at y=±M are perhaps not too surprising once we note that Alfvén
waves are non-dispersive and have non-dimensional phase speed ca = ±M in our
setting, regardless of the wavenumber. Thus, from a physical point of view, we have
forced short-wavelength standing Alfvén waves since U(y)− ca= 0 at these locations.
From a mathematical point of view, we recall that, equivalently, the modal problem
with general basic state in two-dimensional incompressible MHD in non-dimensional
form is governed by the second-order differential equation (e.g. Hughes & Tobias
2001)

d
dy

(
S2(y)

dη
dy

)
− k2S2(y)η= 0, S2(y)= (U(y)− c)2 −M2B2

(y). (4.9a,b)
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If we take the view that critical levels are where the governing eigenvalue differential
equations break down, the critical levels can occur when U(y)− c= 0 and also where
U(y)− c=±MB(y), with the latter associated with Alfvén waves. The appearance of
multiple critical levels is not an isolated feature in MHD, and appears for example in
shear flow problems on the f plane (e.g. appendix B of Lott (2003)).

The second point to note for figure 6(b) is the change in the phase shift of the
counter-propagating components compared to figure 6(a), even though the same
wavenumber was chosen. The stabilisation does not come solely from increasing
the strength of the centre contribution, unlike in one of the examples considered by
Rabinovich et al. (2011). By changing the field strength, we change both the strength
of the critical layer contribution and the wave properties at the interfaces. Although
the critical layer contribution is now stronger, the phase shift between the vorticity
contributions of the outer waves is also approaching an antiphase configuration, so
both effects contribute to the reduction in growth rate. It is also interesting to recall
that, when the two outer vorticity contributions are in antiphase, this implies that
the corresponding displacement is in phase (e.g. Heifetz et al. 2004a), as seen in
the η eigenfunction. In other words, the whole region is undulating as one; this is
physically consistent in that, as we increase the field strength, the magnetic field
imparts more ‘stiffness’ to the fluid, and the fluid is forced to undulate as a whole.

As a final point, figure 6(b) is generic for eigenfunctions near marginal stability
in the sense that, as ci goes to zero, the tilted structures become thinner and the
configuration goes to one where there is no longer constructive interference due to the
vorticity associated with the counter-propagating modes being in phase or in antiphase.
We have shown here the case where vorticity becomes increasingly out of phase, but
of course they may also become increasingly in phase, depending on where we are on
the stability boundary. There is an intermediate region where the stabilisation is solely
due to the strengthening of the centre contribution, but this is a somewhat special case
and, generically, both the changes to phase shift and strengthening of the critical layer
contribute to the neutralisation of the instability.

4.3. Interfacial wave dynamics
From figure 6(a), we observe that the contribution in the centre can be small, so we
may suppose that taking solutions of the form

q= q̂1δ(y− 1)+ q̂2δ(y+ 1), j= ̂1δ(y− 1)+ ̂2δ(y+ 1) (4.10a,b)

has the potential to be a reasonable approximation to the full solution, at least
away from marginality. Since this neglects the standing wave contribution that
counteracts the two counter-propagating waves, we expect the resulting solutions to
have, compared to the solutions presented in figure 5, larger growth rates and a larger
region of instability.

We start from the (q, η) formulation with (2.5a) and (2.6). From the inversion
relation (2.9), we have, in non-dimensional form,

A1,2 =− 1
2k
( ̂1,2 + ̂2,1e−2k), ψ1,2 =− 1

2k
(q̂1,2 + q̂2,1e−2k). (4.11a,b)

Our vorticity equation (2.5a) will have ̂ involved so we also need expressions for
̂1,2. Using A= Bη from (2.7), we obtain from (4.11)

̂1,2 =− 2k
1− e−4k

(η1,2 − η2,1e−2k). (4.12)
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FIGURE 8. (Colour online) Results from taking only two interfaces, for the profile given
in (4.5): (a) shows the growth rates (kci)int of the approximated solution from (4.14);
(b) shows the weighted error E = 1− (kci)full/(kci)int. The thick (red online) line here is
the stability boundary of the full solution in figure 5, while the resonance condition from
(4.7) is shown as the dashed (blue online) curve.

Substituting accordingly, the governing equations (2.5a) and (2.6) become(
∂

∂t
± ik

)
q̂1,2 =± i

2
(q̂1,2 + q̂2,1e−2k)− 2kM2

1− e−4k
(η1,2 − η2,1e−2k), (4.13a)(

∂

∂t
± ik

)
η1,2 =− i

2
(q̂1,2 + q̂2,1e−2k). (4.13b)

In writing (4.13), the fundamental assumption is that the other interface exists, which
results in the appearance of exponential factors (1 − e−4k)−1 multiplying some of
the η terms. This is unlike the stratified case considered in Rabinovich et al. (2011).
Although the displacement is related to the perturbation magnetic potential and
buoyancy for the respective cases, in the MHD case the current also appears in the
vorticity equation; there is no analogue of this in the stratified case.

Considering modal solutions, the system (4.13) has closed-form solutions given by

c=±

√√√√1− 1
2k
+ 1− e−4k

8k2
+M2 ±

√
1

4k2

(
1− 1− e−4k

4k

)2

+ 2M2ξ, (4.14)

where

ξ = 1− 1
k
+ 1− e−4k

8k2
+ 1+ e−4k

1− e−4k
. (4.15)

When M=0, (4.14) reduces to the hydrodynamic solutions c=±√(1− 2k)2 − e−4k/2k
(e.g. Drazin & Reid 1981). For k� 1, a straightforward asymptotic analysis of (4.14)
yields c = i

√
1−M2, which is the vortex sheet result in incompressible MHD (e.g.

Chandrasekhar 1981).
Figure 8(a) shows the growth rates (kci)int of the unstable branch of (4.14). Like

the full solution, the unstable modes here have cr = 0. In figure 8(b) we show
contours of the weighted error E= 1− (kci)full/(kci)int; when E= 0, the approximated
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solution (4.14) agrees completely with the full solution, whilst E = 1 shows that
the approximated solution predicts instability when it is otherwise absent in the full
solution. In agreement with the hypotheses, we over-estimate growth rates as well as
regions of instability, with the over-estimation being most significant in the short-wave
regime and near the stability boundary. In this instance, the resonance condition from
(4.7) shows better qualitative agreement with the location of optimal growth, which
is to be expected since we have artificially removed the contributions away from the
interfaces.

Previous authors analysing the stratified problem (Harnik et al. 2008; Rabinovich
et al. 2011) have observed that, since there are two wave branches, the modal
solutions will have a pro- and counter-propagating component. The existence of
the two components is due to the fact that there is an intermediate step linking
displacement with vorticity. In our schematic presented above in figure 7, the
instability results from the interaction of counter-propagating modes, so it is
informative to investigate the role of the pro-propagating mode. A similar analysis
to Rabinovich et al. (2011) may be carried out here, by taking into account the
asymmetric non-dimensional eigenstructure given by

q̂±1 = 2kc±raη
±
1 , q̂±2 =−2kc∓raη

±
2 , c±ra =−

1
4k
±
√(

1
4k

)2

+M2. (4.16a−c)

We may transform the system of equations (4.13) into a system of equations in terms
of (η±1 , η

±
2 ) via a direct substitution, a self-similarity transform (e.g. Harnik et al.

2008), or otherwise. We come to essentially the same conclusions as Rabinovich et al.
(2011), where, when there is an instability, the pro-propagating mode should satisfy
the relation (η+1 , η

−
2 )=−χ(η+2 , η−1 ), where χ ∈ [0, 1], i.e. the pro-propagating mode on

one flank is smaller by a factor of χ and in antiphase with the counter-propagating
mode on the other flank. The existence of the pro-propagating mode provides extra
hindrance to the counter-propagating modes, with its effect being most significant in
the k� 1 regime. One could consider taking the χ = 0 approximation that artificially
removes the pro-propagating mode; the resulting analytical solution is

c=±
√(

1+ c−ra +
M2e−4k

(1− e−4k)(c+ra − c−ra)

)2

−
(

c−ra −
2kM2

1− e−4k

)2 ( e−2k

c+ra − c−ra

)2

. (4.17)

We show in figure 9 several line plots of the analytical solution (4.14) and the χ = 0
solution (4.17). The differences between the solutions in this case are so slight that
they are only distinguishable at high values of M. This points to the scenario that,
although the pro-propagating mode must exist as part of the physics, its effect on the
instability for this profile is almost negligible compared to the counter-propagating
mode. One may obtain the numerical values of χ by computing the eigenfunctions
(which are just complex numbers in this case), and taking χ = |η+1 |/|η+2 | = |η−2 |/|η−1 |;
although not shown here, we have χ . 0.1 over most of the region where there is
instability.

5. Stable profile destabilised by a spatially varying magnetic field
We now carry out a similar investigation for the case where a stable flow is

destabilised by a spatially varying magnetic field. We consider the dimensional basic
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FIGURE 9. (Colour online) Line plots of the growth rate kci (upper row) and the phase
speed cr (lower row) associated with the growing and decaying solutions of the full
solution (4.14), denoted by solid lines, and the χ = 0 solutions (4.17), denoted by dashed
lines. These are evaluated at fixed M, with (a) M = 0.5, (b) M = 0.75 and (c) M = 0.9.
The χ = 0 solution is, for the most part, indistinguishable from the analytical solution.

state

U(y)=Λy, B(y)=


+Γ y, y> L,
+Γ L, |y|< L,
−Γ y, y<−L,

(5.1a,b)

and ∂Q/∂y= 0 here. Scaling by

B̃= Γ L, T̃ = 1
Λ
, L̃= L, Ũ =ΛL, (5.2a−d)

the non-dimensional parameter is again M = B̃/Ũ, and (B, J, j)→ M(B, J, j) after
rescaling. This piecewise-linear magnetic field profile (resembling a wake) is chosen
so that it satisfies B1J < 0. This profile choice is inspired partly by the parabolic
magnetic field profiles B ∼ y2 considered by Chen & Morrison (1991) and Tatsuno
& Dorland (2006) and the single interface profile considered by Stern (1963). One
notable difference however is that this profile has a well-defined region of maximum
|∂J/∂y|, whilst the profiles considered previously generally have ∂J/∂y = const.
throughout the domain, so this profile is not intended to be directly comparable to
those previous studies. This case also has some similarities to the problem where
there is a linear shear with two density jumps (the Taylor–Caulfield type instability),
considered previously by, for example, Rabinovich et al. (2011); we have here instead
two jumps in the current profile. Again, M = 1 is the cutoff for linear normal mode
instability.

Figure 10 shows contours of (kci)full for this instability problem, and, again, cr = 0
for the unstable modes because of the symmetries possessed by the basic state. The
shape of the instability region in parameter space may again be appropriately justified.
At small M, waves are too slow to overcome the background advection except at
k � 1. As M increases, waves become sufficiently fast, overcome the background
advection and achieve phase locking. For large enough M, all waves are too fast to
phase-lock. The resonance condition in this case are the locations where

c−1 (M, k)= 1− cA(M, k), c+2 (M, k)=−1+ cA(M, k), cA =M

√
1+ 1

2k
(5.3a−c)
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FIGURE 10. (Colour online) Growth rates (kci)full of the full numerical solution associated
with the basic state (5.1). Here, cr = 0 for all unstable modes. The (red online) cross and
circle correspond to the parameter location associated with the eigenfunction displayed in
figure 11(a,b) respectively. The thick (red online) line is the stability boundary, and the
dashed (blue online) curve is the resonance condition given in (5.3); numerical noise is
present at small k partly due to the form of the phase speed cA.

are equal to each other. The conclusion is similar to the previous problem shown in
figure 5, where we expect dynamics away from the interfaces to be significant.

In figure 11 we show two eigenfunctions, one that is representative of a growing
mode away from the stability boundary, and one for a case close to marginality; again,
the parameter locations are given respectively by the (red online) cross and circle
in figure 10. For both cases, we notice that the same contour levels are used for
all three sections, unlike the previous instability problem displayed in figure 6. This
immediately reinforces the suggestion that considering interfacial wave solutions only
at y=±1 as in (4.10) is going to be an overly drastic approximation, since we will
be neglecting contributions that are comparable in size to those at the interface.

Like the previous case, we have significant structures appearing at y = ±M, the
locations where we have forced stationary Alfvén waves with ca=±M (note that this
is not cA given in (5.3)). What is different in this case is that the schematic presented
in figure 7 applies for the inner tilted structures, and so it is Alfvén waves at y =
±M rather than the waves supported by the interfaces that drive the instability. There
are several extra interactions between the structures (affecting wave propagation and
interaction) that lead to the overall instability eigenfunction in figure 11. Comparing
between figure 11(a,b), we observe again that it is a mix of changes to the overall
phase shift between the structures that lead to the neutralisation of the instability.
Notice also that, since we are approaching marginality by increasing M in figure 11(b),
the displacement contours become increasingly in phase, as in the previous example
in figure 6(b).

We should stress here that the instability in figure 11 really does require the
presence of two current jumps to operate, while the B(∂j/∂x) term acts to modify the
resulting interaction. To support this claim, we have carried out calculations for which
we only have one jump. In this setting there is no instability, since the contributions
on the other interface, its adjacent tilted structure and the standing wave in the centre
are absent. The resulting vorticity eigenfunction has the interface and adjacent tilted
structure in antiphase, and there is no constructive interference there. Removing both



Instability mechanism for MHD shear instabilities 219

0.
02

0.
02

0.
02 0.

02

0.
02

0.
02

0.
04

0.
04

0.
04

0.
04

0.
04

0.
04

0.
06

0.
06

0.
06

0.
06

0.
06

0.
06

0.
08

0.
08

0.
08

0.
08

0.
08

0.
08

0.
1

0.
1

0.
1

0.
1

0.
1

0.
1

0.
12

0.
12

0.
12

0.
12

0.
12

0.
12

0.14

0.
14

0.
14

0.
14

0.14

0.
14

0.
16

0.
16

0.
16

0.16

0.
16

0.
18

0.
18

0.18

0.
18

0.2

0.2

0.22

0.
05

0.
05

0.
05

0.
05

0.
05

0.
05

0.
1

0.
1

0.
1

0.
1

0.
1

0.
1

0.
15

0.
15

0.
15

0.
15

0.
15

0.
15

0.
2

0.
2

0.
2

0.2

0.
2

0.25

0.25

0.
12

5

0.
12

5

0.
12

5
0.

12
5

0.
12

5
0.

12
5

0.25

0.25

–0.2
5

–0.2
5

–0
.1

25
–0

.1
25

–0
.1

25
–0

.1
25

–0
.1

25

–
0.125

0

0

0

0

0

0

0.
00

15
0.

00
15

0.
00

15
0.

00
15

0.003

0.
00

3

0.003

0.
00

3

–0.003 –0
.0

03

–0
.0

01
5

–0
.0

01
5

0 0

–0.75

–0.50

–0.25

0

0.25

0.50

0.75

–1.00

–0.95

0.95

1.00

–0.1

0

0.1

0 0.25 0.50 0.75 1.00

–1.0

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1.0

–1

0

1

0 0.25 0.50 0.75 1.00

y

(a) (b)

FIGURE 11. (Colour online) Representative eigenfunctions (normalised by the maximum
absolute value of the vorticity) of the profile given in (5.1), both for k = 0.25, but
with (a) M = 0.8 and (b) M = 0.98. The shading (red and blue online) is for positive
and negative vorticity (respectively), and the displacement is plotted as labelled contours.
In (b), the y scale is continuous between the panels (note the displacement contours are
continuous in magnitude) but is not linear for display purposes.

the jumps (i.e. linear shear flow with a uniform background magnetic field) also
does not result in instability. For the profile (5.1) we consider here, the strength
of the current gradient and background magnetic field are simultaneously controlled
by M. We considered a modified problem where the two parameters may be varied
independently; we also arrive at similar conclusions to the one presented here.

We may take a similar approach to the work detailed in § 4.3, by neglecting
contributions away from the interfaces, which results in analytical solutions that may
be analysed accordingly. However, we do not expect this to provide an accurate
approximation for this particular choice of basic state, since we are neglecting
contributions that are of the same order of magnitude as the ones at the interface.
A comparison of the full numerical solutions with the resulting analytical solution
shows that the analytical solution grossly over-estimates growth rates and the region of
instability. In light of the poor comparison of the analytical result with the correct full
numerical solution, we omit here the results that are counterparts to those presented
in § 4.3.

6. Conclusion and discussion
We have extended the interacting vorticity wave formalism to the MHD setting

to provide a physical interpretation of the instability mechanism for MHD shear
instabilities. In this framework, the existence of instability depends on whether the
choice of basic state allows vorticity waves to resonate; whether the field stabilises or
destabilises is dependent on how the resulting configuration affects wave properties.
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We have demonstrated that vorticity generation occurs at the locations where the
background magnetic field and the background shear are both non-zero so, unlike
certain hydrodynamic cases, critical layers must play a role in the dynamics even for
piecewise-linear basic states.

To demonstrate the modifications to the underlying instability mechanism by MHD
effects, and to compare with previous results and to evaluate the limitations of
the interfacial wave assumption, we considered the instability characteristics of two
piecewise-linear basic states, one where the field stabilises the unstable flow, and
the other where the field destabilises the stable flow. The first example considered
is the Rayleigh profile. The growth rate contours of the full solution agree with the
previous results of Ray & Ershkovich (1983); our contribution here is to rationalise
the shape of the instability region via the properties of the phase speeds of the wave
propagation. The resonance condition and its lack of agreement with the locations
of optimal growth suggests that dynamics away from the interfaces are important;
this is confirmed by plots of the eigenfunctions, which shows that we effectively
have a standing wave structure at U(y) − c = 0 in between two counter-propagating
modes, schematically represented by figure 7. Additionally, we are able to predict
the phase relations of this standing wave contribution from the equations. As we
approach marginality, one interesting feature is that we have additional structures
appearing at the levels where U(y) − c = ±MB(y); these are critical levels that
correspond to locations where we have forced stationary Alfvén waves. Changing the
field strength affects both the strength of the critical layer and phase shifts of the
waves. Although there will be special cases where marginality is achieved when the
critical layer contribution overwhelms the other contributions, generically speaking, it
is a combination of the two effects that leads to neutralisation of the instability. In
this example, we argued that the dynamics of two interfacial waves can serve as a
reasonable approximation to the full problem. We predicted and found that such an
approximation over-estimates the growth rate and the region of instability. Appropriate
analyses in the manner of Rabinovich et al. (2011) were performed to explore the
instability characteristics under the interfacial wave assumption.

The second example we considered is a linear shear flow destabilised by a spatially
varying background magnetic field. The magnetic field profile was inspired by the
parabolic profile B(y)∼ y2 considered by both Chen & Morrison (1991) and Tatsuno &
Dorland (2006), although we stress that the results are not entirely comparable since
∂J/∂y is constant throughout the domain for the parabolic profiles. With regards to
the eigenfunction, a robust feature is that, like the previous example, tilted structures
with significant contributions of vorticity exist at the critical levels. The schematic in
figure 7, however, applies instead to the forced stationary Alfvén waves located at
U(y)− c=±MB(y) counteracted by the standing wave contribution associated with the
critical level U(y)− c= 0. The principal interactions driving the instability are from
these stationary Alfvén waves away from the interfaces, rather than from interfacial
waves.

Part of the reason for employing piecewise-linear profiles is to obtain a simplified
problem for understanding the dynamics leading to instability, as well as for
comparison with previous works on a similar topic. One important point we
highlighted is that one needs to be careful when making the interfacial wave
assumption, since vorticity generation is generally not localised in the MHD case.
The non-local generation of vorticity occurs more generally when considering the
instability problem for smooth basic states (arguably more realistic for modelling
purposes), and the resulting eigenstructure generically has a spatial dependence on
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the cross-stream coordinate. Although waves are then not as well defined, one may
wonder whether the same mechanistic interpretation summarised by figure 7 here is
schematically correct. One study that supports this was reported in the PhD thesis
of one of the authors (Mak 2013). For calculations of the profile U(y)= tanh(y) and
a uniform background magnetic field, plots of the eigenfunction showing structures
similar to figure 6(a) here were found. We expect analogous structures to appear in
eigenfunctions from calculations with other smooth basic states, demonstrating that
shear instabilities may be interpreted as the mutual interaction of vorticity regions.
One other possible scenario for smooth profiles is that the overall eigenfunction
could look schematically like figure 4(b), occurring for example when the basic state
gradients are weak/non-existent, although this has not been found for the examples
considered here.

Beyond incompressible MHD, this wave interaction framework, together with
previous work on the stratified case (Harnik et al. 2008; Carpenter et al. 2010,
2013; Rabinovich et al. 2011; Guha & Lawrence 2013) may perhaps explain the
observations made in the previous work of Lecoanet et al. (2010), where they consider
the shear instability problem in a stratified fluid, with a background magnetic field.
The field in that case can stabilise or destabilise. We suspect that this is most likely
to be due to whether the vorticity wave modes supported by the choice of the basic
state can interact accordingly, leading to instability. We suspect that this is why the
Richardson number or Miles–Howard criterion (e.g. Miles 1961) is not necessarily
applicable to stratified MHD shear flows.

Although we have focused on modal instabilities here, the formulation is kept in
the ∂η/∂t=Aη form (where η denotes the state vector and A denotes the appropriate
operator) so that it may also be used to investigate non-normal mode instabilities
and transient growth (e.g. Constantinou & Ioannou 2011; Guha & Lawrence 2013).
Further, our profiles were chosen so that, when M > 1, |B|> |U| pointwise everywhere,
and a stability theorem forbids normal mode instabilities. Profiles violating this
condition locally do suffer instabilities, and, in particular, have been found for studies
in both two-dimensional, spherical, incompressible and shallow-water MHD (see the
recent review by Gilman & Cally (2007)). Although this particular scenario is not one
we have addressed here, a extension of our interpretation to spherical MHD appears
possible (a hydrodynamic extension in spherical coordinates was given by Methven
et al. (2005)). These instabilities may be explained by energetic arguments, and an
extension of our mechanistic interpretation will serve to complement the existing
explanation. Further, shallow-water MHD simulations on a rotating spherical planet
show the emergence of stable compact monopolar vortex structures of nested patches
of opposite-signed vorticity whose stability is maintained by a strong vertical current
(Cho 2008). This is noteworthy since the same monopolar vortex structure in the
absence of the aforementioned confining magnetic effects are otherwise unstable (e.g.
van Heijst & Clercx 2009). It is conjectured here that the instability characteristics of
such structures may also be attributed to interacting vorticity waves. A formulation
of the problem in spherical MHD allows for a more appropriate comparison to the
existing results, and this is currently under investigation by the authors.
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Appendix A. Some formal analogies with the stratified problem
Using (2.7) to rewrite (2.5a), the linearised vorticity equation in MHD is given by(

∂

∂t
+U

∂

∂x

)
q=−∂Q

∂y
∂ψ

∂x
+ B

∂j
∂x
+
(

B
∂J
∂y

)
∂η

∂x
, (A 1)

coupled accordingly by the kinematic condition; η and ψ here are, respectively, the
horizontal displacement and streamfunction in the (x, y) plane. For the analogous
problem in the Boussinesq system, using the fact that (∂/∂t + U∂/∂x)b = −wN2(z)
and (∂/∂t + U∂/∂x)ζ = w, integrating yields the relation that b = −ηN2(z), where
N2(z) is the background buoyancy frequency. The resulting vorticity equation reads(

∂

∂t
+U

∂

∂x

)
q=−∂Q

∂z
∂φ

∂x
−N2 ∂ζ

∂x
. (A 2)

Here, ζ and φ are respectively the vertical displacement and streamfunction in the
(x, z) plane. Then the formal similarity is that −B(∂J/∂y) ↔ N2. The analogy is
not entirely complete here because of the B(∂j/∂x) term. Further, one may use the
identity j = ∇2A = ∇2(Bη) in (A 1) and observe that the final term disappears, and
instead we have ∇2η terms (see also (4.1)). This does not invalidate the physical
interpretation presented in § 3 since we are merely looking at different forms of the
same terms describing the physics. Indeed, if there was no cancellation, then one
may suppose there is some region where |B(∂j/∂x)|� |(∂A/∂x)(∂J/∂y)|, and then the
analogy with the stratified problem holds, although the physics of the two systems are
fundamentally different.

We note that, in the stratified problem, without assuming interfacial waves, the
evolution equation for the perturbation energy is given by

1
2
∂

∂t
〈(u2 +w2)+N2ζ 2〉 =−

〈
uw
∂U
∂z

〉
, (A 3)

where the angle bracket denotes a domain integral. So if N2 < 0, it is still possible
for the perturbation kinetic energy to grow even in the absence of a background flow.
In the MHD case, a similar manipulation leads first to

∂u
∂t
+U

∂u
∂x
=−v ∂U

∂y
− ∂

∂x
(· · ·), ∂v

∂t
+U

∂v

∂x
= B

(
∂J
∂y
η+ j

)
− ∂

∂y
(· · ·), (A 4a,b)

where the terms (· · ·) between the two equations are the same. Again, it is the
appearance of the perturbation current that makes the analogy incomplete. If we
however assume that ∂J/∂y=1Jδ(y− L) and j= ̂eikxδ(y− L), then it may be shown
that, at y= L,

1
2
∂

∂t
〈(u2 + v2)+ B(2kB−1J)η2〉 =−

〈
uv
∂U
∂y

〉
, (A 5)
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and, in the absence of a background flow, if B1J > 0, it is still possible for the
perturbation kinetic energy to grow at the expense of magnetic energy, resulting in
instability.

With regards to the non-dimensional units, we recall that, in the stratified case, the
governing non-dimensional parameter is Ri = N2/(∂U/∂z)2. In MHD, the governing
non-dimensional number is

M2 = B2
0

U2
0
∼ B(L2B)

L2U2 ∼
−B(∂J/∂y)
(∂U/∂y)2

, (A 6)

and so M2 has a formal analogy with Ri. We should stress that this is only a formal
analogy, since it does not take into account of the B(∂j/∂x) term, which results in
wave modes that are fundamentally different from the gravity wave modes. We note
that, in a similar vein, Stern (1963) defines what he calls the magnetic Richardson
number as (translated into our notation) Rim = (∂B/∂y)2/(∂U/∂y)2.

Appendix B. Formulation in terms of q and j variables
One alternative approach is to use q and j as the fundamental variable over q and

η when considering interface solutions. One immediate issue is that, from the current
perturbation equation (2.10), Q and J are not well defined at the interface locations.
A further approximation that one might make is that the terms with the coefficient Q
and J are small compared to ∂Q/∂y and ∂J/∂y. This may be appropriate if we have
reason to believe that interfacial waves are the most important aspect to the dynamics,
perhaps when the basic state gradients are strong. With this assumption, we obtain the
system of equations (

∂

∂t
+U

∂

∂x

)
q=−∂Q

∂y
∂ψ

∂x
+ B

∂j
∂x
+ ∂J
∂y
∂A
∂x
, (B 1a)(

∂

∂t
+U

∂

∂x

)
j=+∂Q

∂y
∂A
∂x
+ B

∂q
∂x
− ∂J
∂y
∂ψ

∂x
. (B 1b)

With this, we notice that, if we define a generalised streamfunction and vorticity as
φ± = (ψ ± A)/2 and Q± = (q± j)/2, then we have ∇2φ± =Q± and that[

∂

∂t
+ (U ∓ B)

∂

∂x

]
Q± =−

(
∂Q
∂y
± ∂J
∂y

)
∂φ∓

∂x
. (B 2)

This has some formal similarities to employing Elsasser variables (e.g. Biskamp 2003)
in writing the MHD equations, although this is of course different since we have made
an approximation by dropping certain terms in the j equation.
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