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A scaling analysis is presented better identifying the conditions in which the Boussinesq
approximation may be used to study shear disturbances like that of Holmboe modes. The classic
Holmboe normal mode instability is then reanalyzed by including baroclinic effects whose
introduction alters the onset of Holmboe’s traveling-wave instability depending on the direction of
the propagating modes. Since the introduction of baroclinicity is tantamount to relaxing the
Boussinesq assumption, it means that in the presence of shear there is now a vertical variation of the
horizontal momentum flux that alters the phase speed and structure of the classic Holmboe modes;
the physical source of their broken right-left propagatory symmetry is associated with this physical
effect. Furthermore, the regions of parameter space in which Holmboe’s classic analysis predicts
there to be nonpropagating double instabilities now supports propagating Holmboe modes when
baroclinic effects are included. We also find that a globally constant shear profile behaves as a
stabilizing agent, in contradiction to the destabilizing role that shear normally plays in the classic
Kelvin-Helmholtz problem of a shear-density interface. The general relationship between the normal
modes of this type of system to that of the continuous spectrum is also noted. We also find that the
baroclinic effects explored here probably do not manifest in terrestrial oceanographic and laboratory
conditions, although they may do so in atmospheres. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2730544�

I. INTRODUCTION

A mathematically convenient and conceptually effective
way to model an atmospheric flow in which there is both a
density gradient and a variation of the horizontal shear is to
appeal to the Taylor-Goldstein �TG� equation.1,2 The model
assumptions are essentially that of incompressible flow
viewed from the standpoint of the Boussinesq approxima-
tion, namely that variations of the density field are dynami-
cally significant only when they couple to the external gravi-
tational field �or, in principle, any externally imposed force
upon the system�. A rereading of the original treatises of
Taylor and Goldstein reveals that the assumptions that go
into justifying its use are reasonable provided certain condi-
tions of the dynamics are met. There are mainly two suppo-
sitions: �a� the dynamic length scales are short compared to
the scale height of the density variation of the atmosphere,
and �b� the buoyancy time over the dynamic length scale of
the atmosphere is short compared to the typical shear time
over the same length scales. In practice, then, variations of
the steady density profile �due to stratification� are neglected
wholesale except when coupled to gravity, hence the result-
ing Boussinesq set. Those neglected density fluctuation
terms, i.e., those not coupled to the external gravity, are usu-
ally termed the baroclinic effects.

The use of the TG equation is successful in revealing

interesting dynamics that are inherent to such flows. A thor-
ough list is beyond the scope of this introduction, however
one of the more interesting results to emerge is the discovery,
originally by Holmboe,3 of dynamical instabilities existing in
atmospheres that are otherwise stable to buoyancy oscilla-
tions. Holmboe’s analysis was to take the problem of a finite
shear layer in an unbounded domain, originally solved by
Rayleigh,4 and to place a jump in the density profile midway
in the constant shear layer itself. As a reminder, Rayleigh
modeled the finiteness of the shear layer by considering the
shear to be constant inside the layer and for there to be step-
function jumps in the shear profile at the two boundaries of
the shear layer �e.g., see Fig. 1�. This means, then, that the
problem investigated by Holmboe has three stark disconti-
nuities, further implying that these locations of the flow are
sources of delta functions of the mean vorticity gradient,
leading to either constant vorticity layers in two dimensions
or sheets in three dimensions in the disturbances. Holmboe
discovered that under certain conditions there are pairs of
traveling-wave instabilities supported by such a model con-
figuration. The extent and scope of this particular type of
stratified shear instability5,6 have been observed to some ex-
tent in laboratory experiments7 and explored to further theo-
retical detail by numerous authors under a variety of condi-
tions, including those that go beyond the conceptually simple
situation of a sharp interface.8–12

We do not dispute, per se, using delta functions to model
variations of shear or density in atmospheres since such tools
prove to be useful in both solving problems analytically and
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aiding one in developing a mechanistic understanding of the
underlying physics shaping any emergent dynamical activity.
For instance, the conceptual tool of Rossby edge waves13 to
interpret the instability of shear layers such as Rayleigh’s
problem is a fruit borne out by this aforementioned tack. We
ask here a different question: under what physical conditions
might the Boussinesq approximation �i.e., neglecting the
baroclinic effects� not be entirely appropriate? Posed in an-
other way: when would it not be justified to keep variations
of the density only when they are coupled to the external
gravity?

In Sec. II, an order of magnitude analysis is done in
order to determine the relative importance of the baroclinic
effects. The analysis places on firmer ground the conditions
under which the Boussinesq approximation would be valid,
which is the case when

g � �UŪz and g � �U2k�, �1�

as well as k�k�. Here the external gravitational field is g, k
is the inverse of the horizontal disturbance wavelength, k� is
the inverse of the vertical scale of the background density

variation, Ūz is the magnitude of the background shear, and
�U is the larger measure of either �i� the difference of the
background flow far from either side of the density interface
or �ii� c, the wavespeed of the disturbance in question. A
consequential result that follows from these conditions and
orderings is that O��U2k2��O�gk��. In this sense we re-
cover the usual understanding of the Boussinesq approxima-
tion �BA�, namely that k� may be taken to be small yet leav-
ing gk� / ��U2k2� an order 1 quantity.

It is worth reviewing what is meant when one says that
the TG equation neglects so-called baroclinic effects. Baro-
clinic torques are exerted, in general, when the flow exhibits
properties such that at any time

Tf =
1

�2 � p � �� � 0,

where p and �, respectively, denote pressure and density. In
linearized flow, the above expression contributes two terms
to the baroclinic torques. In other words, if p̄ , �̄ represent a

“steady” configuration of an atmosphere while p� ,�� repre-
sent the conjoining linearized disturbances, then the baro-
clinic expression above becomes, to linear order,

1

�̄2 � p̄ � ��� +
1

�̄2 � p� � ��̄ ,

where it is assumed that the steady configuration of the at-
mosphere is barotropic. If the basic state of the atmosphere is
dominantly characterized by a hydrostatic balance, then the
first term is associated with buoyancy effects and this is usu-
ally included in typical analyses. The second term, which is
often times referred to as baroclinic effects, is what is dis-
carded via the Boussinesq approximation and in the TG
equation.

It is therefore our intention here to revisit the problem of
Holmboe’s normal mode instability and to ask how the in-
clusion of baroclinic effects alters the resulting dynamical
activity. We approach this by solving the inviscid incom-
pressible flow equations together with the equation of conti-
nuity. Instead of combining the linearized set into one master
equation and then doing the usual matching procedures re-
served for problems with discontinuities, we will begin in-
stead from the primitive equations �having been linearized�
and apply the solution procedure in the usual way �e.g., as in
Chandrasekhar14�. We find that Holmboe modes lose much
of their symmetric properties since their propagation speeds
and growth rates become dependent upon which direction
the modes are moving. We also notice some other minor
features. Holmboe’s original problem does not limit to the
Kelvin-Helmholtz result in the limit where the layer thick-
ness goes to zero. In the problem of a globally constant shear
profile with a single density interface, it is found that the
usual Rayleigh-Taylor instability is suppressed at sufficiently
long length scales when the baroclinic effects are included.
In other words, shear appears to play a stabilizing role in this
case.

This paper is organized as follows. In Sec. II, we formu-
late the linearized problem. We review the scaling argument
justifying the use of the classical TG equations and consider
the conditions in which inclusion of the baroclinic terms may
be necessary, leading to the validity statement �1�. We con-
tinue in Sec. III to solve what we call the baroclinic Holm-
boe problem, that is, Holmboe’s problem without the Bouss-
inesq assumption. We describe the normal mode solution to
the generalized Holmboe basic state in an unbounded do-
main. In Sec. III A, we demonstrate its limiting forms to
certain classical problems and their normal modes, namely
�i� the Kelvin-Helmholtz solution, �ii� Rayleigh’s 1880 solu-
tion, and �iii� Holmboe’s classic problem. We review how
these normal modes owe their origins to modes otherwise
associated with the continuous spectrum. In Sec. III B, we
present and discuss the problem of a globally constant shear
with a density interface, followed in Sec. III C by a discus-
sion of the baroclinic Holmboe problem. The first of these
three subsections serves to review previous work in order to
set the context within which the new results reside, with
insights presented in the latter two subsections. In Sec. IV,
we �a� review our results, �b� discuss the physical regime in

FIG. 1. �Color online� A schematic for Holmboe’s problem. This configu-
ration reduces to Rayleigh’s problem �Ref. 3� when the two densities are the
same.
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which the inclusion of these baroclinic effects may be impor-
tant and assess whether they are relevant to known observa-
tions and experiments, and �c� compare and contrast the
physical implications of the baroclinic effects as well as dis-
cuss future directions. The two appendixes detail the calcu-
lation performed.

II. FORMULATION OF THE BAROCLINIC
TG EQUATION

The analysis of this study is restricted to two-
dimensional disturbances. The flow is incompressible every-
where. We assume that there exists a background basic flow
state in the horizontal �x̂� direction where its functional de-

pendence is denoted by Ū�z�, also implying its dependence
on the vertical coordinate, z. The quantities u and v repre-
sent, respectively, the horizontal and vertical velocities atop

the basic flow state Ū. We assume no viscosity. The flow is
in a constant gravitational field �g� pointing downward in the
horizontal direction, z. The total density is represented in two
parts, one denoting the steady background state only depen-
dent on z, i.e., �̄�z�, and the other representing dynamical
departures from this state, ��x ,z , t�. Thus the full equations
of motion are

�xu + �zv = 0, �2�

��t + Ū�x + u�x + v�z�u + vŪz = −
�xP

�̄ + �
, �3�

��t + Ū�x + u�x + v�z�v = −
�zP̄ + �zP

�̄ + �
− g , �4�

��t + Ū�x + u�x + v�z�� + v�̄z = 0. �5�

The pressure is broken up into its steady component P̄ and
its corresponding dynamical departure P. Hydrostatic bal-

ance relates P̄ and �̄,

P̄z = − g�̄ . �6�

Linearization of the governing dynamical equations around
this steady state reveals the following:

�xu + �zv = 0, �7�

��t + Ū�x�u + vŪz = −
1

�̄
�xP , �8�

��t + Ū�x�v = −
1

�̄
�zP − g

�

�̄
, �9�

��t + Ū�x�� + v�̄z = 0. �10�

Because the flow is incompressible, we may express the dis-
turbance quantities in terms of a stream function �, that is,

v = − �x�, u = �z� . �11�

Additionally, we can consider the vorticity defined to be

� = �zu − �xv = ��x
2 + �z

2�� . �12�

With these definitions in mind, the equations of motion may
be cast into a single equation for the stream function �. One
proceeds by �i� operating on �8� with �z, �ii� operating on �9�
with �x, and �iii� subtracting the result leaving

��t + Ū�x�� + vŪzz =
�̄z

�̄
�1

�̄
�xP� − g�x��

�̄
� ,

where the incompressibility condition was invoked. The
above expression may then be further reduced by �iv� explic-
itly replacing the pressure term �the first term on the right-
hand side �RHS�� with the relationship �8�, �v� operating the

resulting expression with �t+ Ū�x, and �vi� replacing the re-
sulting last term on the RHS of the expression with the rela-
tionship in �10�. Lastly, the velocity expressions are replaced
according to their stream-function representation �11� to re-
veal the following:

��t + Ū�x�2��z
2 + �x

2�� − Ūzz��t + Ū�x��x� −
�̄z

�̄
g�x

2�

+
�̄z

�̄
���t + Ū�x�2�z� − Ūz��t + Ū�x��x�� = 0. �13�

The Taylor-Goldstein equation is �13� with the terms involv-
ing the variation of the density coupled to the advective-
inertial terms neglected,15,16 i.e.,

��t + Ū�x�2��z
2 + �x

2�� − Ūzz��t + Ū�x��x� −
�̄z

�̄
g�x

2� = 0.

�14�

Inspection of the baroclinic terms dropped from �13� leads
one to ask the following: How might the baroclinic effects
modify or shape the linearized dynamics in systems of the
sort considered here? In particular, we note that these ne-
glected baroclinic terms are proportional to �̄z / �̄ just as the
retained buoyancy term. This observation suggests that one
ought to be able to formulate a firm scaling argument declar-
ing better the conditions under which the buoyancy term
dominates the baroclinic term. Such a statement will provide
a condition for the validity of the Boussinesq approximation
and ultimately the TG equation. Such an analysis is pre-
sented below.

As �13� is the exact linearized formulation of these equa-
tions of motion, one may consider normal mode solutions of
the form

� = �̂�z�eik�x−ct� + c.c.,

and if we let �� be the atmosphere’s scale height and have it
be defined by the expression

1

��

= k� �
�̄z

�̄
,

then �13� becomes
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	�z
2 + k��z − k2 − � k�Ūz + Ūzz

Ū − c
� −

gk�

�Ū − c�2

�̂ = 0, �15�

cf. Eq. �44.7� of Drazin and Reid.15 By contrast, the Taylor-
Goldstein equation �14� with the normal-mode ansatz is re-
written as

	�z
2 − k2 − � Ūzz

Ū − c
� −

gk�

�Ū − c�2

�̂ = 0. �16�

Note that it is common in the literature to designate J�z�
=−k�g as the square of the Brunt-Väisälä frequency.15 Fol-
lowing Taylor,1 we define a modified stream function,

�̂ �
�̂

��̄
,

and introduce it into �15� to find

	�z
2 −

1

4
k�

2 − k2 −
1

2

�k�

�z
− � Ūzk� + Ūzz

Ū − c
� −

gk�

�Ū − c�2

�̂ = 0.

�17�

First implicit in the BA is the assumption that the horizontal
length scales are much shorter than the vertical variation of
the background density gradient. In other words, the BA as-
sumes that k	k�.

An analysis of the importance of the baroclinic effect
may be best considered by studying its role in �17�. The often
neglected term,

k�Ūz

Ū − c
� O� k�Ūz

�U
� , �18a�

must be considered against the classical buoyancy term,

gk�

�Ū − c�2
� O� gk�

�U2� . �18b�

The scalings appearing after each expression above are jus-
tified by noticing �see the review of the classic Holmboe
analysis below� that the resulting wave speeds, in the small

horizontal wavenumber limit, are such that Ū−c is the
greater of either �i� the magnitude of the difference of the
two background flow speeds far from the interface, �U+

−U−�, where U±=U�z→ ±
�,19 or �ii� the buoyancy wave
speed ���g /k, where k is the disturbance wavenumber and
where �����+−�−� / ��++�−� is similarly a scaled magnitude
measure of the difference in densities far from either side of
the shear interface. In other words, we assume that �U
=O��U+−U− � ,���g /k�, where the choice of these will de-
pend upon which mode is being considered. We note again
that these cited scalings are asymptotically correct in the
small wavenumber limit �for example, see the asymptotic
forms in Eq. �34��.

Neglecting the baroclinic term while keeping the buoy-
ancy term constitutes the BA. In the classical vernacular with
respect to this matter, the BA amounts to saying that varia-
tions of the density are only considered when coupled to the

external gravity. A scaling argument leading to the BA is to
say the following: one may let the background density gra-
dient go to zero, i.e., k�→0, yet have the gravity go to in-
finity, i.e., g→
, in such a way that the product of the two
terms remains an order 1 quantity. It follows from this con-
struction that those terms involving k� that are not coupled to
gravity are then always subdominant to the buoyancy term.

By comparing the two terms of �18b� and �18b�, i.e.,

�UŪz ·k� and g ·k�, the limiting procedure just outlined is
really saying that the BA is appropriate for use when

O�g� � O��UŪz� . �19�

In other words, the BA �UŪz is always a “small” accelera-
tion compared to g. However, in those cases in which the

shear transition layer is made infinitely small �making Ūz

correspondingly large� and/or when the disturbance wave-
number is small �making �U�1/�k�, the assumed domi-

nance of g over �UŪz will break down. As the infinitely thin
shear layer configuration is approached, as one must affect in
order to reach the Kelvin-Helmholtz limit, the assumed

asymptotic dominance of g over �UŪz �taken as axiomatic in
the BA� must break down. In addition, this analysis suggests
that disturbances involving long wavelengths should lead to
some qualitative differences if the BA is assumed in the con-
sideration of Holmboe modes.

Finally, in order to technically complete the scaling
analysis justifying the BA, one must also require that

O�k�
2� 	 O� gk�

�U2 ,
Ūzk�

�U
� , �20�

however, given the dominance implied by �19�, the above
requires that

O�k�� 	 O� g

�U2� . �21�

It follows then that those terms that remain would imply that

O�k2� � O� gk�

�U2� . �22�

Consequently in nondimensionalized units, if O��U2k2�
�O�1�, then it follows that O�gk���O�1� as well. This is
nothing but the classical justification of the BA, namely that
k� may be taken as small as one likes yet leaving the product
gk� an order 1 quantity.

III. THE BAROCLINIC HOLMBOE PROBLEM: A CASE
STUDY WITH DISCONTINUITIES

We consider an infinite vertical domain split in half by
fluids of two different densities at z=0, that is �see Fig. 2�,

�̄ = �0 − 1
2� , z � 0,

�0 + 1
2� , z � 0.

� �23�

We use a nondimensional measure of the density difference
between these layers by defining
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 �
�

�0
.

Note that the values  can take are restricted according to
−2��2. In steady state, solutions of the hydrostatic equi-
librium relation give

P̄ =− �0�1 − 1
2�gz + P̄0, z � 0,

− �0�1 + 1
2�gz + P̄0, z � 0,

� �24�

where P̄0 is a constant whose value is the pressure at z=0.
Note that the pressure here is continuous, although its verti-
cal gradient has a discontinuity at z=0.

For the sake of illustration, we consider a velocity profile
composed of several constant shear layers of the sort,

Ū =�
�+�z −

h

2
� + �

h

2
, z �

h

2
,

�z , −
h

2
� z �

h

2
,

�−�z +
h

2
� − �

h

2
, z � −

h

2
,

� �25�

where � ,�± are constants. Inspection of the above shows

that Ū is continuous across the domain while the shear, Ūz, is
step-like. The shear constant � is related to the fiducial ve-
locities at the positions z= ±h /2 by identifying �=u0 /h.

That means that Ū�±h /2�= ±u0 /2. Another nondimensional
quantity in common use in the literature18 is to define J, the
Richardson number, as

J � 
gh

u0
2 ,

which is a measure of the effect of buoyancy versus shear.
We refer to this configuration as the generalized Holmboe
basic state.

The general normal mode calculation is straightforward
and its details �along with a procedural review� are presented
in Appendixes A and B. What results is a fourth-order dis-
persion problem for the complex wavespeed c, i.e.,

c4 + a1c3 + a2c2 + a3c + a4 = 0, �26�

where the general forms for the constants ai are given in
Appendix B. In this study, we will consider only special
cases dictated, for instance, by the constants �± and limiting
values of J and  and the nondimensionalized wavenumber
K�kh.

We set the scene for what follows by noting that the
basic tenets of the Taylor-Goldstein ansatz is equivalent to
the Boussinesq assumption. As in standard studies of buoy-
ant convection,14 the Boussinesq assumption, aside from in-
compressibility, is to suppress density variations of any sort
�both steady and dynamical� except for when they couple to
gravity. In the way the problem has been formulated, the
Boussinessq/TG limit is mathematically recovered by setting
the density variation term to zero, i.e., =0, while maintain-
ing the Richardson number to be nonzero �i.e., J�0�.

A. Classic limits

1. h\0, �±=0: Kelvin-Helmholtz limit

It is natural to verify that this theory is limited to the
results of the Kelvin-Helmholtz �KH� problem in the limit in
which the separation of the two layers goes to zero. First, we
begin by setting �±=0, which recovers the usual Rayleigh
problem configuration. Second �and this is done frequently
throughout the remainder of this work�, � is rewritten ac-
cording to �=u0 /h. Because according to the definitions of
K and J, namely that each is linearly proportional to the
separation h, the Kelvin-Helmholtz limit is achieved by tak-
ing the limit of �26� for

K → 0, J → 0, while
J

K
� 0. �27�

In practice, it means assuming K to be small and appropri-
ately Taylor-expanding the expressions for ai in
�B11a�–�B11d�. The dispersion relation simplifies to

c2�c2 +
u0

2
c −

g

2k
+

u0
2

4
� + O�h� = 0. �28�

Aside from the two null roots, the remaining pair of
wavespeeds is, after restoring dimensional quantities,

c =

�+Ū�h

2
� + �−Ū�−

h

2
�

�+ + �−

± �g

k
��− − �+

�+ + �−
� −

�+�−	Ū�h

2
� − Ū�−

h

2
�
2

��+ + �−�2 �
1/2

,

�29�

in which we have employed the definitions �±=�0�1�
1
2�,

which were used in Appendix B. The above expression com-
pares exactly with the expression for the wavespeed for the
Kelvin-Helmholtz problem �cf. Eq. �4.20� in Drazin and
Reid7�. Although this is well known, we remind the reader
that an inspection of the terms under the radical sign in �29�
shows that the Kelvin-Helmholtz result predicts that shear,

FIG. 2. �Color online� A schematic for a generalization of Holmboe’s
problem.
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manifesting itself here as a discontinuous jump in the hori-
zontal flow, is a destabilizing agent for disturbances.

2. �=J=0: Rayleigh’s 1880 and case 1960

When there is no gravity and no density jumps any-
where, the results reduce to the problem first investigated by
Rayleigh4 �see also Sec. 23.2 in Drazin and Reid15�. Setting
�±=0 recovers the profile he assumes. The physical problem
and its corresponding dispersion relation, which are fre-
quently interpreted in terms of counterpropagating Rossby
waves,13 is

c4 −
u0

2

4K2 ��K − 1�2 − e−2K�c2 = 0. �30�

Besides the null modes, the remaining pair of solutions are

c = ±
u0

2kh
��kh − 1�2 − e−2kh�1/2 = 0.

Modes in this unbounded shear layer are well known to be-
come exponentially growing when �K−1�2−e−2K�0.

It is known that the problem involving an infinitely ex-
tended constant shear �in 2D� has no normal-mode solution,
although there are initial value solutions comprised of a con-
tinuous spectrum.17 It is instructive to examine here what
happens under those circumstances by setting �±=� in
�B10� giving

c4 −
u0

2

4
c2 = 0. �31�

In addition to the double c=0 root, this dispersion relation
also predicts two wavespeeds of c= ±u0 /2, corresponding
exactly to the background flow speed at the respective posi-
tions z= ±h /2 of the shearing fluid. Whereas a classical �glo-
bal� normal-mode analysis admits no normal modes for this
problem, there are two nonzero normal modes predicted here
with zero amplitude. This can be interpreted as being a mani-
festation of the continuous spectrum. On either side of each
of the discontinuities, one observes no difference in the back-
ground shear. Consequently, one expects there to be no ef-
fective perturbation vorticity generation since, for example,
an Eulerian observer will measure the same total vorticity, in
contrast to the classical Taylor problem ��±=0� in which an
Eulerian observer will measure step-function changes of the
vorticity as the front passes through this position. Because
under these conditions there is no jump in vorticity, the dis-
continuities become “ghost”-like. As such, this classical
analysis actually serves to capture a set of modes �here just
two� that otherwise belong to the continuous spectrum. We
call these “ghost-like” in this normal-mode analysis because
they have zero amplitude according to �A2�. These modes
would be excited to nonzero amplitude in an initial-value
problem investigation. If one considers disturbances about a
set “ghost” discontinuities corresponding to the positions z
= �zi� and if one repeats the same procedure, then one would

predict a set of wavespeeds c= �ci�= �Ū�zi��.

3. �=�±=0: A review of the classic Holmboe problem

As discussed in the Introduction, Holmboe’s results are
generated from assuming the Taylor-Goldstein equation in
the Rayleigh flow geometry, i.e., �±=0. At the heart of the
Taylor-Goldstein ansatz lies the assumption, shared by the
basic Boussinesq approximation, that density differences are
dynamically significant only when they are coupled to grav-
ity. In the way the problem has been formulated in this study,
the TG ansatz is realized by setting =0 while keeping J
�0. Indeed, this procedure reduces the dispersion relation
�26� to

c4 − � u0

2K
�2

�2JK + �K − 1�2 − e−2K�c2

+ 2JK� u0

2K
�4

�K − 1 + e−K�2 = 0. �32�

Careful inspection of �32� shows it to be equivalent to Holm-
boe’s equation �cf. Eq. �4� of Lawrence et al.18�. The general
stability characteristics of this equation are well known17 and
we briefly summarize them here. If �K−1�2+2JK−e−2K�0
as well as J�0, then all four disturbances oscillate with no
growth or decay. If �K−1�2+2JK−e−2K�0 and J�0, then
there is one pair of oscillating modes and a pair of growing/
decaying exponential modes. These unstable modes are re-
lated to the Rayleigh-Taylor instability �that is, for an un-
stable density stratification�. If �K−1�2+2JK−e−2K�0 and
J�0 again, there is one pair of growing/decaying exponen-
tial modes and another pair of oscillating modes that are
similarly associated with the Rayleigh-Taylor instability.

The Holmboe instability, namely the appearance of two
pairs of complex conjugate modes, i.e., modes where c
= ±cr± ici with cr ,ci�R+, occurs if J�+��J�J�−�, in which
J�±� is the solution to the condition

��K − 1�2 + 2JK − e−2K�2 − 8JK��K − 1� + e−K�2 � 0.

Its solution is

J�±� =
e−2K

2K
�3 + eK�K − 1��4 + eK�K − 1���

±
e−2K

K
�2�1 + eK�K − 1��3�1/2. �33�

In the language used by Lawrence et al.,10 the �/� modes
are referred to as the positive/negative instability. Inspection
of the stability of the critical Richardson numbers above
shows that Holmboe modes do not exist for values of J�0.
In other words, both J�±��0.

If �K−1�2+2JK−e−2K�0, then there is a region
bounded by J�−��J�0 in which there are two pairs of ex-
ponentially growing/decaying modes that we will refer to as
nonpropagating double instabilities. One pair of these non-
propagating modes is associated with the Rayleigh un-
bounded shear layer instability �i.e., the instability when J
=0 of the previous section�. With the help of Figs. 3 and 4,
we may summarize the salient qualitative features of Holm-
boe’s results for J�0. The dispersion curves are shown for
the complex frequency defined by
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� �
2Kc

u0
.

The transition from Holmboe-type modes to stable modes
occurs when the real wavespeeds of Holmboe modes bifur-
cate. We indicate in Fig. 5 those regions in parameter space
supporting the various types of modes.

Further analysis shows that in the limit in which K→0,
the four modes have the asymptotic form

c2 =
u0

2J

2K
+ O�K� and c2 =

u0
2

16
K2 + O�K4� . �34�

Holmboe’s result, i.e., the general dispersion relation
�32�, is unable to limit to the Kelvin-Helmholtz problem as
h→0. To best illustrate this, we apply the limiting process
prescribed by �27�–�32�. We find the resulting dispersion
relation,

c2�c2 −
g

2k
+

u0
2

4
� + O�h� = 0. �35�

As h→0, the nontrivial solution for the wavespeed becomes
�after restoring dimensional quantities�

c = ± 	g

k
��− − �+

�+ + �−
� −

u0
2

4

1/2

, �36�

which is not the classic KH limit �29� but is, instead, the
Boussinesq-Kelvin-Helmholtz �BKH� result. There are two
differences between these results. The first is that the classic
Kelvin-Helmholtz analysis predicts that there will be a
propagation speed for the modes that are unstable and this
speed is associated with the center-of-mass reference frame.
The BKH result, on the other hand, predicts that those modes
that are unstable appear stationary in the laboratory frame.
The second difference is that the predicted growth rates are
different despite the center-of-mass reference frame shift.
Moving into such a frame with respect to the KH result, �29�,

FIG. 3. �Color online� Dispersion relationship for the classic Holmboe prob-
lem with =0 and J=0.1. The appearance of Holmboe modes occurs in a
range in K between 0.2 and 2. Note that the wavespeeds and growth rates of
the four modes have the form c= ±cr± ici.

FIG. 4. �Color online� Dispersion relationship for the classic Holmboe problem with =0 and J=0.05. Unlike in Fig. 3, there are now two ranges in K in
which Holmboe modes exist. The right panel is a blowup view near K=0.1 detailing the appearance of this second Holmboe mode range. Additionally, the two
Holmboe mode ranges sandwich a range in K between 0.14 and 0.63 supporting two pairs of nonpropagating exponentially growing/decaying modes.
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and after replacing terms one finds that the KH growth rate,
Im�cKH�, may be written as

Im�cKH� = 	g

2k
+ �1 −

2

4
�u0

2

4

1/2

. �37�

By taking a ratio of this to the BKH growth rate, Im�cBKH�
shows that

Im�cKH�
Im�cBKH�

=
	1 + �1 −

2

4
� u0

2

2g
k
1/2

	1 +
u0

2

2g
k
1/2 � 1. �38�

Inspection of this expression shows that the BKH result will
slightly overpredict the growth rate in this instance. The
baroclinic effects here, controlled by the expression 2 /4,
reduce the predicted growth rates. The effect is more pro-
nounced as  is made larger.

B. �±=�: Globally constant shear flow
with a density interface

By setting �±=�, the flow configuration simplifies to
that of a globally constant shear profile �a shear layer of
“infinite” width� punctuated by a density interface at z=0
�see Fig. 6 for a schematic�. The dispersion relation simpli-
fies greatly to

�c2 −
u0

2

4
��c2 +



2K
u0c −

J

2K
u0

2� = 0. �39�

There are two modes that represent disturbances propagating

with the local velocities at z= ±h /2, that is, c= Ū�±h /2�
= ±u0 /2. As already discussed, these two modes are mem-
bers of the continuous spectrum. On the other hand, the re-
maining two modes represent shear modified Rayleigh-
Taylor type disturbances,

FIG. 5. �Color online� A summary of Holmboe mode theory. The Holmboe mode boundaries are shown between the shaded regions bounded by the curves
J�±��kh�. The nonpropagating double instability zone is the region 0�J�J�−� lying in the range 0�K�1.278. Also displayed with horizontal dashed lines is
the cut in parameter space corresponding to the dispersion relations depicted in Figs. 3 and 4.

FIG. 6. �Color online� Infinite shear layer schematic.
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c = −
�

2k
��− − �+

�− + �+
� ±

1

2
	g

k
��− − �+

�+ + �−
�

+
�2

k2 ��− − �+

�− + �+
�2
1/2

. �40�

In contrast to the KH modes �see �29��, the dispersion solu-
tion �40� says that a smooth shear behaves as a stabilizing
agent to these kinds of disturbances since the shear term
under the radical sign is always positive definite, as opposed
to the corresponding analogous term in �29�. Buoyancy is a
dominating effect for sufficiently small wavelength distur-
bances. What is most surprising is that the dynamical stabil-
ity implied by shear dominates the destabilizing role of un-
stable buoyant modes for sufficiently long length scale
disturbances. In particular, the marginal condition under the
radical sign indicates the critical transition which occurs for
wavenumbers that satisfy

0 � k � kc =
�2

16g
��+ − �−

�+ + �−
� , �41�

which holds only for configurations where �+−�−�0, that is,
in an otherwise statically unstable configuration since other-
wise there is no instability. Because there is no natural length
scale in the shear, the corresponding characteristic scale ���
at which this type of shear profile is dynamically significant
over buoyant dynamics is when ��g /�2.

It is important to rationalize on some level the differ-
ences inherent in the typical KH instability and the instability
according to the Boussinesq formalism. In particular, had the
problem of the globally constant shear been treated accord-
ing to the Boussinesq ansatz, namely by setting =0 and J
�0 in �39�, we would find that the dispersion relation is that
of the classic Rayleigh-Taylor instability, i.e.,

c = ±
1

2
	g

k
��− − �+

�+ + �−
�
1/2

. �42�

The implication of this result is to say that an analysis of
disturbances of a density interface with a globally constant
shear, done with the Boussinesq assumption, will miss any
dynamical influence that shear will have on the disturbances.
This means that the resulting normal modes behave as if
there were no shear at all.

The physical reason for this total absence lies in where
the Boussinesq assumption is made. In terms of the horizon-
tal momentum balance equations, the density on either side
of the interface would be taken to be the same under the
Boussinesq ansatz; cf. �A6�. The densities appropriate to
whichever side of the interface one is on, i.e., �±, would be
replaced instead by some average density �say �̄0�. This
means that the aggregate horizontal momentum fluxes due to
the basic shear, both above and below the density interface,
would be equal and opposite. As a result, the shear would
exert no dynamical influence in the resulting stress condition
�A5� since, by construction, those terms associated with the
shear will cancel out exactly. Furthermore, waves traveling
toward either direction feel/exert no net momentum transfer
from/to the fluid as a result of their propagation.

When the Boussinesq ansatz is relaxed, then there exists
an asymmetry between the left- and right-going waves be-
cause there is a net transfer of momentum �in the basic state�
by the shear/density profile. Ultimately this shows up as an
asymmetry in the respective propagation wavespeeds, i.e.,
the first term on the RHS of �40� represents a sort of “center-
of-mass frame” of the flow. From the vantage point of this
moving frame, waves appear to propagate symmetrically.

C. �±=0, the baroclinic Holmboe problem

In this more general case, the dispersion relationship
becomes

c4 + � u0

2K
��1 − e−K�c3 − � u0

2K
�2

�2JK + �K − 1�2 − e−2K�c2

− � u0

2K
�3

�K − 1 + e−K�2c

+ 2JK� u0

2K
�4

�K − 1 + e−K�2 = 0. �43�

It is best to discuss the effects of baroclinicity in contrast to
the classic Holmboe analysis �=0�. The first very clear dif-
ference is that the introduction of baroclinicity breaks the
left/right symmetry in the propagation speeds. In other
words, the inclusion of baroclinic effects distinguishes be-
tween waves propagating leftward or rightward, unlike in the
=0 theory, where waves propagate with equal speed irre-
spective of direction �see Figs. 7 and 8�.

The mechanical physics of this wavespeed asymmetry is
related to the wave propagation properties in a globally con-
stant shear flow �cf. Sec. III B�.

Another subtle mathematical feature is that any nonzero
amount of baroclinicity, i.e., �0, wipes away the non-
propagating double instability zone discussed in terms of the
classic Holmboe theory, and in its place appear four Holm-
boe modes, i.e., growing/decaying propagating modes. This
is depicted in Fig. 9. In the classic theory, Holmboe modes
appear in groups of four with wavespeeds ±cr±ci. Bifurca-
tion into or out of the Holmboe instability in parameter space
occurs simultaneously as the relevant parameter is tuned �ei-
ther K or J�. For �0, the bifurcation occurs first for the
positive instability �cf. Sec. III A�, i.e., modes propagating
rightward. As the wavenumber K=kh approaches the bifur-
cation point from the stable regime, the mode propagation
speeds converge upon each other. Once converged, the
modes become unstable and the propagation speeds become
locked. Beyond this bifurcation point, there now exists a
range of K where there are two Holmboe modes and two
stable modes. As one moves toward even larger wavenum-
bers, the left-going waves �the negative instability� eventu-
ally bifurcate into existence in the same way described for
the positive instability. Beyond the negative instability bifur-
cation point, there is now a window in K in which there are
four Holmboe modes, just like in the =0 theory. As K is
continuously increased, however, the right-going waves find
their growth/decay rates merging at 0; these two modes be-
come stable and their propagation speeds unlock from each
other. Beyond this value of K there are only the two left-
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propagating Holmboe modes. Just as before, the left-going
waves follow suit: their growth/decay rates merge as K is
increased, leaving behind two more stable modes with un-
locked propagation speeds.

At given values of K and for extreme values of  and J,
positive and negative instabilities do not necessarily coexist.
In other words, as K is increased, the right-propagating
Holmboe modes come into and out of existence before the
left-propagating Holmboe modes do �see, e.g., Fig. 7 and the
bottom panel of Fig. 8�.

IV. DISCUSSION AND CONCLUSIONS

Because the TG equation assumes the Boussinesq ap-
proximation, its application is formally limited to physical
scenarios that satisfy the assumptions underlying the ap-
proximation. Through a scaling argument and analysis of the
exact governing equation, we have shown that the regime of
validity is when �1� is satisfied. The question that seems
natural to us is as follows: What would be the dynamical
outcome to incompressible atmospheric flow problems in

FIG. 7. �Color online� Dispersion re-
lation J=0.5, =0.5.

FIG. 8. �Color online� Dispersion re-
lation J=0.95, =0.95.
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which �1� is violated. This question is equivalent to inquiring
as to how baroclinic effects �i.e., those physical effects fil-
tered out by the Boussinesq approximation� modify the dy-
namical outcome in such problems. In short, does a liberal
application of the TG equation to problems whose basic
states or dynamical responses violate the regime of validity
of the Boussinesq ansatz �1� lead to dynamics that are sig-
nificantly different from the predicted dynamics where baro-
clinic effects are formally included in the analysis?

In this sense, we consider the problem of Holmboe’s
instability to be a natural setting to pursue this question. In
the context of that problem, the constraints implied by �1�
suggest that the BA should formally break down with respect
to the description of Holmboe modes when the horizontal
wavelength of disturbances is sufficiently small �making c
large� and/or if the size of the shear layer is narrow enough

�Ūz large�.
This work has achieved some deeper insight into the

modification of these modes by including baroclinic effects
into a “generalized” Holmboe configuration �Fig. 2�. The re-
sults show some notable differences in the normal-mode be-
havior compared to the classical results The problem has
been crafted in such a way as to be governed by three pa-
rameters: the nondimensional measure of the density differ-
ence at the interface, ; the nondimensionalized wavenum-
ber K, whose physical scale is measured by the layer

thickness h; and the Richardson number J, which measures
the buoyant time to the shear time. In the theory we have
extended here, the Boussinesq limit �i.e., the TG ansatz� is
achieved by keeping J�0 while letting →0, and barocli-
nicity is measured by .

The most important result we see implied by the normal-
mode analysis is that the baroclinic influence breaks the sym-
metry of the classic Holmboe modes �reviewed in Sec.
III A�. By this we mean to say that both the complex
wavespeeds and the incidence in parameter space for the
rightward- and leftward-propagating Holmboe modes are
now no longer the same. The source of this asymmetry can
be found in the way momenta are matched across the discon-
tinuous surfaces. In particular, the culprit appears to be the
matching of the normal stresses across the moving surface:
in the Boussinesq approximation, the horizontal fluxes �see
�A6�� are calculated incorrectly because the densities across
surfaces are taken to be the same �except when coupled to
gravity� while in the correct treatment the difference in den-
sities is preserved. In the more strict treatment, we find that
the horizontal momentum fluxes above and below the den-
sity discontinuity are no longer equal and opposite as they
are �by construction� in the Boussinesq approximation. This
is the broken symmetry and its hand propagates throughout
the resulting mode properties: propagation speeds are no
longer equal and opposite, and the right- and left-propagating
Holmboe modes are not locked to each other in parameter
space as they are in Holmboe’s classic treatment �e.g., see
Figs. 7 and 8�. There are some additional minor observations
we have made:

�i� For a certain range in parameter space, Holmboe’s
classic theory predicts the existence of two pairs of
exponential growing/decaying modes �referred to as
the nonpropagating double instabilities in the text�.
Introduction of baroclinic effects immediately de-
stroys the nonpropagatory nature of these modes by
turning them also into Holmboe modes �see Fig. 9�
and to connect what were otherwise �in classical
Holmboe theory� two separated bands �in wavenum-
ber� of Holmboe modes. The propagation speeds of
these transformed modes is proportional to the degree
of baroclinicity of the system .

�ii� In the limit where we have a globally constant shear
profile in an infinite domain with a density disconti-
nuity �Sec. III B�, we find curiously that shear be-
haves to stabilize disturbances. Of course, if the den-
sity variation is Rayleigh-Taylor unstable �i.e., �0�,
there can be instability but only if the unstable strati-
fication is severe enough �see the dispersion relation
�40��.

�iii� In reference to the same problem of Sec. III B, the
Boussinesq limit of that problem shows no influence
of shear whatsoever in the resulting normal-mode
wavespeeds �i.e., the Boussinesq limit �42��, although
the resulting eigenfunctions will still reflect some sig-
nature of the shear.

�iv� The TG equation is not limited to the classic Kelvin-
Helmholtz dispersion relation in the limit where the

FIG. 9. �Color online� The stability regions for three values of . The green
zone signifies the presence of four Holmboe modes. The yellow zones indi-
cate two Holmboe modes and two stable modes. The unshaded zones cor-
respond to four stable modes. Also indicated by dashed curves is the stabil-
ity boundaries given by J±, i.e., the =0 theory �see Fig. 5�. Note that the
nonpropagating double instability zone of the =0 theory vanishes instantly
when �0.
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layer thickness goes to zero, i.e., when h→0. Instead,
it is limited to the Boussinesq-Kelvin-Helmholtz re-
sult. There are two differences of note that follow
from this. The first is that all unstable modes de-
scribed by the Kelvin-Helmholtz analysis, which are
fully baroclinic, have nonzero propagation speeds ir-
respective of whether or not the modes are unstable
�Im�c��0� or stable �Im�c�=0�. This propagation
speed is associated with the center-of-mass frame of
the fluid. Since the Boussinesq approximation ne-
glects density variations not associated with buoy-
ancy, it cannot reflect the vertical variation of the per-
turbed horizontal momentum fluxes above and below
the density interface as discussed above. Thus the
BKH analysis predicts that unstable modes appear sta-
tionary to the laboratory observer. The second differ-
ence has to do with the growth rates associated with
these unstable modes: the BKH analysis overpredicts
the growth rates in proportion to the degree of baro-
clinicity. This overprediction, however, becomes pro-
nounced only when its upper limit is approached, i.e.,
→2.

Experiments and observations

It is natural to inquire as to whether these baroclinic
effects have any bearing on the results of experiments and
observations made thus far. A recent laboratory study re-
ported by Zhu and Lawrence considers Holmboe’s instability
as manifesting itself in the exchange flow of two different
density fluids passing over each other in a constant-width
channel.7 An order-of-magnitude calculation using numbers
typical to their experiments shows that according to �1�, their
laboratory studies are within the Boussinesq regime.20 More
specifically, given their typical Richardson numbers and
shear layer thicknesses �J�1/2 and �=1 cm, see their Fig.
3�, the typical reduced gravity �g�=g�1.5 cm s−2, see
their Table I� and the typical wavespeeds associated with the
observed unstable Holmboe modes �cr�0.5 cm s−1, see their

Fig. 11� show that the quantity �U�1.7 cm s−1 and Ūz

�1.7 s−1, giving for the RHS of �1� the measure �UŪz

�3 cm s−2, which is sufficiently less than g�103 cm s−2.
Note that the choice of �U comes from the difference of the

sheared velocities �i.e., �U��Ū+− Ū−�� and not from the
wavespeed cr since the latter is dominated by the former.

Observations reported by Oguz et al.21 similarly suggest
that the two-layer exchange flow taking place in the Bospho-
rus Strait is also within the realm of the Boussinesq approxi-
mation. The strait is characterized by fresh �less dense� water
from the Black Sea flowing atop and opposite to salty �more
dense� water flowing from the Sea of Marmara. That stretch
of the strait where the flow is tightly constricted measures
about 31 km, while the average depth is about 50 m �this
does not include the sill that is located near the Marmara side
of the strait�. The transition layer between the salty and fresh
water lies midway down in depth and has a typical transition
zone thickness of 5 m �see their Fig. 3�c��. The difference in
velocities between the Marmara-ward flowing fresh water

versus the Black Sea-ward flowing salty water is estimated at
about 0.5 m s−1, although this too depends on one’s location
with respect to the sill �see their Fig. 5�d��. From the reduced
gravity, they estimate from the data �g��0.81 m s−2, see
their Table I and the related salinity graphs� that one may
liberally estimate �0.1. A further liberal assumption would
be to state that the shear transition layer scales here the same
as the thickness of the density transition zone. With this as-

sumption, one may estimate Ūz�0.2 s−1 leading to the baro-

clinic measure �UŪz�0.1 m s−2. We see here that despite
these liberal estimates, the flow here does not feel with any
significance the baroclinic effects considered here. Had we
estimated the thickness of the shear layer by the depth of the

Bosphorus Strait instead, the estimated measure of �UŪz

would be ten times less.
These two examples show that at least as far as terres-

trial oceanographic conditions are concerned, the Boussinesq
approximation and the use of the TG equation are well-
justified. A far more likely candidate in which the baroclinic
effects discussed here may manifest is in the atmosphere.
The mean wind at the atmospheric boundary layer, which is
roughly at 1–2 km from the Earth’s surface, is about
10 m s−1, while at the base of the stratosphere �i.e., the
tropopause, which marks the beginning of the temperature
inversion�, located at about 10–12 km, the mean flow is
roughly 100 m s−1.22 These numbers give the estimate that

�UŪz�1 m s−2, which is only 10% of g. Although techni-
cally it means that this part of the atmosphere is also appro-
priately described by the BA and TG equations, it does sug-
gest that baroclinic effects could manifest themselves and
lend themselves to being observed in these physical condi-
tions. It is possible that the baroclinic effects might be more
pronounced on Mars. The extreme seasonal meridional
winds observed on Mars are also 100 m s−1, but because
Mars’ surface gravity is one-third of the Earth’s, it would put

the measure �UŪz on nearly equal footing with g there.
This work sets the stage toward developing a simple

mechanistic description of the Holmboe instability, both
within the Boussinesq and fully baroclinic treatments. Ongo-
ing work to this end is aimed at applying and expanding the
idea of the counterpropagating Rossby wave �CRW� “action
at a distance” view to the physical scenario described in this
work. As this viewpoint has been applied successfully to
Rayleigh’s problem,13 here we are working toward including
the interaction between the CRWs �which appear and propa-
gate at the shear discontinuities� and those internal gravity
waves appearing on the density discontinuities.
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APPENDIX A: PROCEDURAL REVIEW
FOR PROBLEMS WITH DISCONTINUITIES

Problems involving discontinuities, such as a density
jump in the classic Rayleigh-Taylor example or a step-like
jump in the shear as in the classic Rayleigh problem, imply
two fundamental conditions when one matches across the
discontinuous dynamical surface, namely that �a� lest there
be layer separation, there is a single interface and the normal
velocities on either side of it must match, and �b� the stresses
normal to the surface are also continuous. In nonviscous lin-
earized problems such as the ones considered here �in which

there is no discontinuity in the steady velocity field Ū�, the
two conditions translate to �i� the vertical velocity being con-
tinuous across the interface, as well as �ii� the Lagrangian
pressure perturbation. The manner in which these are in-
stated is described below.

Inspection of the governing equations shows that when

the background density field �̄ and background shear Ūz have
step-like discontinuities, and when we restrict ourselves to
two-dimensional motions, then the normal-mode response of
the flow field away from these discontinuities is
irrotational.15,17 In other words, instead of solving for the
stream function �see above�, we may invoke the Cauchy-
Riemann condition and represent the flow in terms of a po-
tential �, viz.,

�x� = u = �z�, �z� = v = − �x� .

Given the normal mode ansatz, the potential must there-
fore satisfy Laplace’s equation

��z
2 − k2��̂ = 0 �A1�

everywhere away from the discontinuities. Furthermore, the
Lagrangian equation of motion for an interface initially at
rest at z, and subsequently perturbed, viz., z→z+�z�x , t�, is
given to linear accuracy by

ik�Ū�z� − c��̂z = v̂�z� , �A2�

where the position of the interface is denoted by �z

= �̂ze
ik�x−ct� �the general equation of motion for an arbitrary

interface initially at z is given by ��t+ �u�z��+ Ū�z����x��z

=v�z��, in which z� is evaluated at the position of the moving
boundary, z+�z�.

If the vertically varying horizontal basic velocity field

�i.e., Ū� is continuous, then, to linearized accuracy, the ver-
tical velocities above and below an interface, located at some
position z, must be equal. The continuity of the vertical ve-
locities means that the gradients of the velocity potentials
must match from above and from below the interface �de-
noted by “�” subscripts, respectively�, i.e.,

�z�̂+ = �z�̂−.

The meaning of our notation here is that for any quantity
f�z�, we have that

f±�z� ↔ lim
z�→z±

f�z�� ,

where z± indicates the approach to z from either above or
below �respectively�.

On the other hand, the total Lagrangian pressure of a
fluid parcel, �, can be written in terms of Eulerian variables
as

��z,�z,t� = P̄�z + �z� + P�z + �z,x,t� . �A3�

Because this is a linear theory and since all dynamical quan-
tities are infinitesimal, expanding the above to first order
reveals

��z,�z,t� = P̄�z� − �̄g�z + P�z,x,t� + ¯ . �A4�

Continuity of this quantity across the dynamical surface
means that ���z� ,� , t��z�→z+ = ���z� ,� , t��z�→z−. In terms of

the current problem and since P̄�z� is everywhere continu-
ous, matching of the dynamical Lagrangian pressure across
the moving surface means matching

− g�+�̂z + P̂+ = − g�−�̂z + P̂−, �A5�

where P±= P̂±�z�eik�x−ct�+c.c. is the Eulerian pressure fluc-
tuation above and below the moving boundary, respectively.
We may explicitly express this piece of the total pressure by
consulting �8� to obtain

−
ik

�±
P̂± = ik�Ū − c�u± + Ūzv±. �A6�

APPENDIX B: NORMAL-MODE CALCULATION

Laplace’s equation �A1� must be satisfied in four zones
defined as

Zone 1 ↔ z �
h

2
,

Zone 2 ↔ 0 � z �
h

2
,

Zone 3 ↔ −
h

2
� z � 0,

Zone 4 ↔ z � −
h

2
.

The solutions to �̂i are each

�̂1 = A1e−k�z−h/2�,

�̂2 = A2e−kz + B2ekz,

�B1�
�̂3 = A3e−kz + B3ekz,

�̂4 = B4ek�z+h/2�.

The solutions are chosen so that all velocities exhibit decay-
ing behavior as z→ ±
. The relationships between all of the
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coefficients Ai ,Bi are determined by the matching conditions
below. The velocity fields ui and vi in each corresponding
Zone “i” are simply

ûi = ik�̂i, v̂i = �z�̂i.

Because this particular problem has only one density inter-
face, it will be enough to consider only its interface’s equa-
tion of motion, which is, being at z=0,

ik�U0 − c��̂0 = v�0� . �B2�

In order to proceed, we must match all the vertical velocities
at each of the three corresponding interfaces, respectively, at
z=h /2, z=0, and z=−h /2. These establish the first three
relationships,

− A1 = − A2e−kh/2 + B2ekh/2, �B3�

− A2 + B2 = − A3 − B3, �B4�

B4 = − A3ekh/2 + B3e−kh/2. �B5�

The continuity of the total Lagrangian pressure fluctuation
across each of the three surfaces, according to the prescrip-
tion in �A5�, can be expressed with the aid of �A6� in each of
the three instances. Since there is no density interface at z
=h /2, the condition simplifies somewhat to

− k2	Ū�h

2
� − c
A1 − �+A1

= − k2	Ū�h

2
� − c
�A2e−kh/2 + B2ekh/2� − �A1, �B6�

where we have made use of �B3� in writing the last term on
the RHS of �B6�.

The stress condition at z=0 constitutes the most cumber-
some of the resulting expressions,

−
�̄+

ik
��k�− A2 + B2� + k2c�A2 + B2�� − �̄+g�̂0

= −
�̄−

ik
��k�− A2 + B2� + k2c�A3 + B3�� − �̄−g�̂0, �B7�

where �B4� was used to rewrite the first term on the RHS of
�B7�. For convenience, we have introduced the notation �̄±

=�0�1�
1
2�. To supplement this, we explicitly write the

equation for the interface,

− ikc�̂0 = k�− A2 + B2� , �B8�

where we have again used �B4� in writing the RHS of �B8�.
Lastly, since there is also no density interface at

z=−h /2, the stress condition there becomes

− k2	Ū�−
h

2
� − c
B4 + �−B1

= − k2	Ū�−
h

2
� − c
�A3ekh/2 + B3e−kh/2� + �B4,

�B9�

where, in a similar fashion, we have made use of �B5� in
writing the last term on the RHS of �B9�.

The set �B3�–�B9� constitute seven equations for seven
unknowns of the form

Mx = 0,

in which x= �A1 ,A2 ,B2 ,A3 ,B3 ,B4 , �̂0�T. Nontrivial solutions
exist only if det�M�=0. As a consequence, the following
dispersion relationship must be satisfied for the complex
wavespeed:

c4 + a1c3 + a3c2 + a3c + a4 = 0, �B10�

where the individual coefficients appearing above are

a1 =
h

4K
�e−K��+ + �− − 2�� + 2�� + �− − �+�� , �B11a�

a2 =
h2

8K2 �2e−2K�� − �−��� − �+� − e−K�K + 2����− − �+�

− 2�−��+ + �K − 1 − ��� − 2�2�1 + K�K + 2J − 2��

− 2��+�K +  − 1�� , �B11b�

a3 = −
e−2Kh3�

8K3 „�2�1 + �K − 1�eK�2 + �eK − 1���+

�� − eK�2JK + �1 − K��� + �eK − 1���−

�� + eK�2JK − �1 − K��� + �eK − 1��−�+… , �B11c�

a4 =
e−2Kh4J�2

8K3 ���1 + eK�K − 1�� + �−�eK − 1��

����1 + eK�K − 1�� + �+�eK − 1�� . �B11d�

The nondimensional terms J, K, and  are defined in the
text. This calculation was verified using Mathematica 5.0.
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