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The optimal dynamics of conservative disturbances to plane parallel shear flows is interpreted in
terms of the propagation and mutual interaction of components called counterpropagating Rossby
waves (CRWs. Pairs of CRWs were originally used by Bretherton to provide a mechanistic
explanation for unstable normal modes in the barotropic Rayleigh model and baroclinic two-layer
model. One CRW has large amplitude in regions of positive mean cross-stream potential vorticity
(PV) gradient, while the second CRW has large amplitude in regions of negative PV gradient. Each
CRW propagates to the left of the mean PV gradient vector, parallel to the mean flow. If the mean
flow is more positive where the PV gradient is positive, the intrinsic phase speeds of the two CRWs
will be similar. The CRWs interact because the PV anomalies of one CRW induce cross-stream
velocity at the location of the other CRW, thus advecting the mean PV. Although a single Rossby
wave is neutral, their interaction can result in phase locking and mutual growth. Here the general
initial value problem for disturbances to shear flow is analyzed in terms of CRWs. For the discrete
spectrum (which could alternatively be described using normal madélse singular value
decomposition of the dynamical propagator can be obtained analytically in terms of the CRW
interaction coefficient and the intrinsic CRW phase speeds. Using this formalism, optimal
perturbations, the disturbances which grow fastest in a given norm over a specified time interval, can
readily be found. The most natural norm for CRWs is related to air parcel displacements or
enstrophy. However, if an energy norm is taken, it is shown to grow due to both mutual
amplification of air parcel displacements and the untilting of PV struct(ttes Orr mechanisin
associated with decreasing phase difference between the CRWSs. A generalization of the CRW
description to the optimal dynamics of the complete spectrum solution is outlined. Although the
dynamics then involves the interaction between an infinite number of “CRW kernels,” the form of
the simple interaction between any two CRW kernels is the same as in the discrete case.

© 2005 American Institute of PhysidDOI: 10.1063/1.1937064

I. INTRODUCTION gation rate of the other CRW and can also promote its
growth. Growing normal modes are obtained if a suitable
The concept of counterpropagating Rossby wavephase difference exists where interaction makes the CRW
(CRWs was developed originally by Brethertbto explain  phase speeds equal so that they phase lock, and also results
the baroclinic |nstab|||ty mechanism for CyClone grOWth in in mutual growth_ The mechanism also app”es to the baro-
the atmosphere. He described the instability in terms of intropic Rayleigﬁ model where CRWs propagate along the
teraction between two edge waves, one located at the earthgﬂges of an isolated strip of uniform vorticitgf. Heifetz
surface and the other on the atmospheric tropopause. Eagh al?).
wave by itself is neutral and propagates zonély., along a Hoskinset al® revised and clarified the CRW concept,
latitude circlg, via the Rossbfmechanism. At the ground  5nd Heifetzet al® generalized the CRW description to cover
the wave propagates eastward and the mean flow is wegkserative quasigeostrophic three-dimensi¢d@) distur-
while at the tropopause there is a strong eastward jet but the, a5 1o all plane parallel shear flows which are linearly
wave prgpagat;a S v_vestward, .counter”to th? flow. T.he WaV€§nstable. They showed that CRW evolution equations can be
'r':lteerzgic;ngl \?vri]n d?icgonaliza dllstan_(t:e d fa§h|c;1r; lt)y dmdufmgderived from the Hamiltonian equations where the Hamil-
T g a longitude circethat advects tonian, generalized momenta and coordinates are the quasi-

the basic state potential vorticit4PV) at the other level. L
Depending on their phase difference, the additional meridi-geOStrOph'C disturbance pseudoenergy, the CRW pseudomo-

. . menta and phases. This generalization also rationalized the
onal displacements of PV contours modify the zonal propa- o . - : .
necessary criterion for instability of Raylefgfand its baro-

clinic analog of Charney and Stéjrand the Fjgrtoft crite-
dAuthor to whom correspondence should be addressed. Electronic mail. 9 y y 19

9
eyalh@cyclone.tau.ac. i rion. Methvenet al.” have fu_rther gxtended the CRW theory

PElectronic mail: J.Methven@reading.ac.uk to general zonally symmetric basic states on a sphere where
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Ertel PV is conserved following air parcels along isentropiction Dg/Dt=0 with respect to the basic state @) (D/Dt
surfaces. Methveet al*® have shown that the CRW proper- =g/dt+v-V, q=2z-V Xv, andz is the vertical unit vector
ties derived from linear theory are remarkably robust and cagives

be used to predict some features of the nonlinear evolution of 3 9 q
baroclinic eddies on realistic midlatitude jets. (— +U—>q’ =- U,_q =v'A[8ly+b)=-8y-b)]. (2
As discussed by Heifetet al.® the interaction of a CRW a X ay

pair describes the discrete spectrum evolution for any probrpe giscrete spectrum solution () for wavenumbek can
lem where the initial conditions are a linear superposition ofye \written as

a growing normal mode and its complex conjugate. The fo-

cus of the companion papetbleifetz et al,'* Methven et q' =[au(k,) &y +b) + ga(k, ) &y — b) ], (33
al.>!9 has been on interpreting growing normal mode struc-

tures and dis_pe_rsion relation§ in terms of CRW interaction W =- i[ql(k,t)e—klwbl +q2(k,t)e—k\y—b\]eikx, (3b)
for more realistic representations of the midlatitude atmo- 2k

sphere. However, the extensive work by Fart&lt? : o .
Trefetheret al.*® Schmid and Henninasoh Le Dizest® and (the continuous spectrum of the solution is discussed in the
? gson, ' Appendix. The perturbation streamfunctioff satisfiesu’

others showed how the fundamental nature of shear allows’ ", L D L
rapid nonmodal transient growth due to nonorthogonal inter- a1y, v'=ay'lox, andq’ =V, Writing then

action between the modes. Farrell and loarfidbereafter 0y = Qq(k, ekt (4a)
F196) developed the generalized stability thedyST) for .
linear dynamical systems and showed how the optimal non- g, = Q(k,t)e'®, (4b)

modal growth can be obtained from a singular value decomt-he erturbation can be regarded as two vorticity edge waves
position (SVD) of the propagator matrix of the dynamical P 9 y edg

system with amplitudesQ,, Q, and phases;, ;. By substituting
In this paper the aim is to demonstrate how the CRW(S) and(4) into (2) and taking the real and imaginary parts at

perspective might be helpful in understanding the physicaY_ib’ the CRW evolution equations are obtained,
mechanism behind optimal growth in shear flows. In Sec. I, G, = 5Q, sine, (5a)
a short review of the CRW perspective is presented using the
Rayleigl*? model for illustration. This example was chosen
because the dynamical propagator is a simple22matrix
whose SVD can be derived analytically. Then, in Sec. Ill, the
GST is applied to this model and the optimal growth is in- €=- kc%— 0'% COSe, (6a)
terpreted in terms of CRW interaction. Based on this analysis 1

the generalization of the CRW perspective to optimal growth

on more general shear flows is outlined in the Appendix. The e&=—kd+ U% cose, (6b)
conclusions are summarized in Sec. IV. >

.QZZO-Ql sin €, (Sb)

with
II. CRW INTERACTION ILLUSTRATED A
USING THE RAYLEIGH MODEL o= E

Heifetz et al* discussed CRW interaction in the

Rayleigﬁ’ model, focusing mainly on their phase-locking be- 1 — 1
havior into the growing normal mode configuration. The c=u(-b) 1_R ' (7b)
analysis is summarized here before examining optimal per-
turbations. o 1
Consider a 2D, inviscid, incompressible flow whose ba- ~ C3= (b)<1 - E) (70
sic state velocity and vorticity profiles are
(Ab fory=b where K=2bk is the normalized wavenumber arg: (e,
_ —¢,) is the CRW phase difference.
u=Ay for —b<y<b (1a) Equation (5) indicates that each wave can only grow
|I—Ab fory=-b, through interaction with the other and the strength depends
. upon the interaction coefficient and the CRW phase differ-
0 fory=Db encee. Equation(6) indicates that in the absence of interac-
q={-A for —-b<y<b (1b)  tion the 1Wa;/es would propagate with their intrinsic phase
0 fory<-b. speedscy, ¢5 given by (7b) and (7¢). The intrinsic phase

speed comprises two terms: a Doppler shift due to the basic
Here (x,y) are the streamwise and cross-stream Cartesiagtate flow at the edge and a propagation counter to this flow
coordinates associated with the velocity=(u,v)=(u thatis proportional to the wavelength. The latter term results
+U’,v’), where overbars and primes indicate the basic statbom Rossb§ wave propagation to the left of the basic state
and perturbation, respectively. Linearizing the vorticity equa-vorticity gradient vector.
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T=0 . to lead to the phase remaining in the range ef & and
veb S q B continued growth. The equilibrium position for the phase
! would correspond to the growing normal mode. For eastward
' A v phase shifts, similar arguments apply and there is decay.
However, in this case the hindering/helping mechanism tends
-V A to shift the phase from the decaying range af— 0 toward
yeob the growing range of 8. This indicates the nonmodal
tq +q > evolution mechanism in the initial value problem which
leads towards convergence to the phase-locking configura-
tion of the growing normal mode.
FIG. 1. Schematic illustration of the counterpropagating Rossby waves  Note that although the instantaneous growth is the fastest
(CRWs in the Rayleigh model in the conflguratlpn _of the most _unstabIeWhen the CRW phase difference 492, cf. (5)' in this con-
normal mode(wavenumbeiK =0.8). Blank arrows indicate the basic state . . , .
velocity U on the edgesly=:b). Bold horizontal arrows represent the figuration the CRWs cannot affect ee_’-Ch other’s prOPaga“Qn
CRWSs' propagation direction. The edge positive and negative vorticityspeed, cf(6), and therefore can remain phase locked only if
anomalies are indicated bygtand the circulation they induce is illustrated  their intrinsic phase speeds are equal, i.e., wKerl [(7b)

by the circled arrows and by the cross-stream solid arrows locatet® out . .
of phase of §'. The undulating solid lines illustrate the CRWs’ cross-stream and (7C)]' The gravest normal mode is obtained when

displacement, where the basic state vortigiigt the vicinity of the edgesis =~ 0-657 (K~0.8), in a configuration that hinders the self-
given by (1b). The two CRWs are phase-locked with phase differeace propagation of both CRWs.

~0.65m. The dashed arrows indicate the velocity induced by each CRW on The behavior of CRWs and normal modes in the Ray-
the opposite edgéattenuated bye™X, (3b)]. Since the_ phase difference_ leigh problem is depicted in Fig. 2 as a function of wave-
7/2<e,<m each CRW advects the basic state vorticity on the opposite . . Y ;
edge in a way that makes other CRW grow and hinders its naturahumber. The interaction coefficienisolid curvg decreases
propagation. exponentially with wavenumbei7a) reflecting the scale de-
pendence of the strength of cross-stream velocity induced by
a CRW on the opposite edge of the shear region. The Rossby
If the relative phases of the two waves are known therivave propagation rate is proportional to the wavelength and
the sense of the interaction between the CRWs can be ascéherefore as wavenumber increases the intrinsic phase speed
tained following the arguments in Hoskies al® In Fig. 1~ of each CRW becomes dominated by advection by the mean
the CRWs are shown with the phase differeffiee-0.657)  flow at its home baséc is shown by dashed curkeFor
corresponding to the phase-locked configuration of the fastiigh wavenumbergK >1.28 the intrinsic counterpropaga-
est growing normal mode. “CRW-1" exists on the negativetion of each CRW is weak relative to the shear and phase-
vorticity gradient at the southern edge and “CRW-2” existslocked states are only possible when there is no phase differ-
on a positive vorticity gradient at the northern edge. Theence(cose=1) so that the interactiori6) lends maximum
strongest northward flow and hence negative vorticity tenhelp to the propagation of each CRW counter to the flow at
dency induced by the CRW-1 at the northern edd@shed its home base. Also, the CRWs must have different ampli-
arrow) lies between 0 andr/2 to the east of the negative tudes so that the interaction terms(#) can counteract the
vorticity extremum of CRW-2. It therefore amplifies CRW-2 difference in intrinsic phase speeds. The resulting pair of
but reduces its propagation rate westwards. Similarly, théormal modes cannot grow because the CRWs are in phase
northward flow and hence positive vorticity tendency in- (5). One is dominated by CRW-2 and advection on the north-
duced by CRW-2 at the southern edge is between Odiad ~ €rn edge, and therefore has a positive phase sjpeesses in
to the west of the positive vorticity of CRW-1. This leads to Fig. 2), while the other is dominated by CRW-1 and west-
growth but slows the eastward propagation of CRW-1. Thevard advection on the southern edget shown.
interaction of the two CRWs leads to the growth of each but At wavelengths just longer than the short-wave cutoff
slows the propagation of each against the mean flow at thellK~1.28), the counterpropagation rate of the CRWs is suf-
respective latitudegreferred to as “home bases” by Heifetz ficiently strong relative to the shear that their intrinsic phase
et al_e)_ As each wave slows the other in its Counterpropagaspeeds are similar. Additionally, the interaction is strong
tion, this is referred to as a “hindering” configuration. enough to modify their phase speeds so that they can be
For a phase difference between 0 ant2, the negative ~made equal when the CRWs are not in phése 0). The
vorticity tendency induced by CRW-1 at the northern edge iSCRW growth rates are only equal, when si# 0, if their
betweens/2 and 0 to the west of the negative PV of CRW-2. amplitudes are equgQ; =Q, in (5)]. The phase difference,
There is again growth but this time the westward propagatiofin the locked configuration of the growing normal mode oc-
of CRW-2 is enhanced by the interaction. Similarly, it can becurs whene; = ¢, in (6), thus giving
argued that the CRW-1 grows and propagates more rapidly to
the east as a consequence of its interaction with CRW-2. = k(c3—c1)
Thus, the interaction of the two CRWSs again leads to the " 20
growth of each and “helps” their self-propagati@ounter-
acting differential advection by the shear in flow (indicated by circles In the range KK<1.28, counter-
Since the interaction acts to increase the westward phaggopagation is weaker than advection by the mean flbw
shift when it is between 0 angt/2 and decrease it when itis —1/K>0 in (7b) and (7c)] so that the CRWs lock with a
betweens/2 and, if it is strong enough it can be expected small phase difference which helps counterpropagatidn

=0

(8
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2 Rayleigh CRW dispersion relation
T T T T T
15 _ ............................. ............................. ............................. ............................ ........................... _
FIG. 2. The CRW parameters which
B N S S 0000600060000 5000000000 b0000000004  d6termine the Rayleigh normal mode
o : : : dispersion relation as functions of the
: : : normalized horizontal wavenumbir.
: ¢ : e FommTTTTTT - The modal growth ratkc=o sine,,
0.5 — """""""""""""""" """" o___-—"‘" """"""""""" """""""""""""" = (11)’ normalized by the shea&, isin-
; : - +++++1E.+-+-+++++-¢-+-§-+++++++++ dicated by asterisks. The positive
e * : P ’7; s - : branch of the modal phase speé&tH),
0 —#<i»+~+»+~+»+-+»+~-§--+--++~+<+»+<+~+;+,~§<1»+~+~+<+»I»*~ak~ﬁ»f»*»*~t-»r*»&~t——k--u»d:bar*»*4*»*<&~*<w»*a:i<-m»*--t»ﬁ»ﬁ»*-&- = normalized by PA is shown by the
: L0 plus symbols. The cosine of the CRW
: e : : : phase difference in the growing mode
I - ORI N .,.4.’40,.0. ........... e s OO EESPROTO - configuration, cos,, (8), is indicated
A : by circles. The interaction coefficient
59" « ke o, (7a), normalized byA, and the in-
I DL S N N T . trinsic upper CRW phase  speed,
/i : : : * r (70, normalized by BA, are indi-
/’é . cated, respectively, by the solid and
;o : : : the dashed lines.
_1 5 L ’4 ............................. s ° wse+
1
T I e e &
-2 l‘ i i i i
0 05 1 15 2 25 3

< cose, <1) but enables mutual growtfthe normal mode vative, linearly unstable parallel shear flow. They can be re-
growth rate is shown by asterisks in Fig. At longer wave-  written with the amplitude and phase definitiof), in the
lengths (K < 1) the counterpropagation of each CRW is somatrix form as follows:

strong that its intrinsic phase speed has a greater magnitude . _

than the basic state flow at its home bésey.,c3 becomes a=Aa, (%3
negativg. Phase locking can only occur when interactionwhere

hinders the propagation of each CRW, although enabling mu-

tual growth (-1<cose, <0). The maximum modal growth q= <q1>1 (9b)
rate occurs aK~0.8 where there is a trade-off between the S

exponential increase in interaction strength with wavelength

and the requirement for an increasingly hindering configura- A= _i<k<i o ) (90)
tion to enable phase lockingreducing the normal mode - -0 chZ '

growth rateo sine,). ) ) _ )

The illustration here is based on the Rayleigh model.The general solution t69) can be written in the equivalent
However, the CRW evolution equatiofs) and (6) can de-  forms
scribe the evolution of a disturbance to any steady plane () = eAlg(0) = (Pe-'P1)q(0) = (UZV1)q(0), (10)
parallel flowu(y,z) that could alternatively be described by
the superposition of a growing normal mode and its decayingvheree*' is the propagator matrix of the linear dynamits.
complex conjugatgHeifetz et al®. However, the expres- Is a diagonal matrix containing the complex eigenvalue& of
sions for interaction coefficient and CRW phase speeds ddordered by their real values, Rg) =Re(\;)] andP is the
pend on the basic state of the model and PV inversion relacorresponding matrix of eigenvectors. Alternatively=V ™)
tion, and(7) is specific to the Rayleigh model. It is clear is the SVD of the propagator matrix and bdthandV are
from the CRW evolution equatior(s) and(6) that the CRWs  unitary matrices(i.e., UUT=I, whereU" is the Hermitian
can gain the largest transient amplitude growth when th&€onjugate ofJ). % is a diagonal matrix which contains real
phase difference stays the longest in the vicinityesfr/2. positive entries, called singular values, ordered by magnitude
Next, we examine optimal transient growth from the CRwalong the diagonalo;=0,=0).

perspective. Only if the matrixA is Hermitian(AT=A) do the eigen
decomposition and the SVD become identical. If the matrix

11l. GENERALIZED STABILITY THEORY A is normal but not Hermitiafi.e., commuting with its Her-

IN TERMS OF CRWS mitian conjugate AAT=ATA) then its eigenvectors are or-

thogonal,gj=eR¥N) andU=V.
WhenA is not normal,o; > eR¥M)t, As shown by FI96,
The CRW evolution equationt) and (6) are general o is the largest possible growth that autonomous linear sys-
and describe the discrete spectrum dynamics of any conseems of the form of(9a can achieve in a time interval

A. Formulation
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The CRW interpretation is straightforward. If the two

the first column unit vector o¥. The optimal vector at time CRWSs have the same intrinsic phase speeds, phase locking is

t is found by amplifyingq(0) by the factoro; and then
projecting it onto the first column vector &f. FI96 exam-

achieved when interaction cannot modify their propagation
rates. This occurs when they are in quadratere,/2. The

ined the optimal growth for the two target time limits of zero CRWSs cannot gain any additional growth by moving relative
and infinity. The maximum instantaneous growth rate isto each other and thus the maximal growth rats achieved

equal to the maximum eigenvalue @k +AT)/2 and its as-

by the eigenvectors themselves. In the latter case of zero

sociated eigenvector yields the optimal instantaneous stru€RW interaction(c=0), no growth is possible and the two
ture. For the target time infinity the optimal perturbation CRWs become two decoupled neutral edge waves which

would eventually be projected onto the gravest made

propagate with their own intrinsic phase speeds(Xf) and

However its initial perturbation would be in the direction of (15).

the biorthogonal vector of the most unstable maodede-
fined by the first column vector of the matrix=(P™)T. At
longer timesq(t) — |r,|e?*)p,, where|r,|>1 if A is non-
normal.

B. Normal modes in terms of CRWs

The eigenvalues oA, (9¢), are

A1 ,=—ikCt oyl -f2, (12)
where
Cc=1(ci+c), (123
k(c2-ct
p= M) (12b)
20

If f2<1 then pairs of growing and decaying normal modes

exist. Inspection of8) reveals that in this regimé=cose,
and thereforex; ,=—ikcto sine,, where €, is the CRW

C. Optimal growth in the enstrophy norm

Aside from the special cases described above, the matrix
A is non-normal and greater growth can be achieved by sin-
gular vectors than by normal modes. The SVDebfcan be
calculated analytically(using, for instance, the symbolic
math package of the softwakTHEMATICA ). A is given by
(90) andU andV are the eigenvectors eftert ander teAt,
respectively,

1( 1 —ie*

U = TE _ e_iE() _ | y (173)
AY
1 [ieTlo 1

V= S\ i —dw) (17b
\

The final optimal vector can be expressed in terms of the
phase difference between the CRWs at the initial tkper
final time ¢ by noting that the top entry corresponds to

phase difference when they are locked into the growing norCRW-1 and the second to CRW-2,

mal mode configuration. In this case,can be identified

immediately as the normal mode phase speedasid ¢, is
its growth rate. The eigenvectors Afare then

1(1 1
P=lge eie) (13)

If f2> 1, the eigenvalues are purely imaginary indicating that

the normal modes are neutral. Their phase speeds are

C1,=C7 E\n& -1, (14)
with the eigenvectors
P 1 (a 1) (15
- Va2 +1\1 « '

wherea=f+\f2-1.

The matrixA, (9¢), is normal only either whem}=c3
(occurring atk=1 wherec;=0), or in the limit case ofo
=0 (K—x). When the CRW phase speeds are eqfrml
(12b) and thereforé11) and(13) give

o 0
I-normaI: (0 _ 0_) ) (166)
1(1 1
Prormal= ?< . . ) . (16b)
V2\i =i

1 1 1(1
U =-—r= “ieg |~ Al de | (18)
V2\-¢€ 0 \*‘2 ee
which implies the relationshig,=7-¢€,. Thus, the optimal
evolution is symmetric about the phase differeng®. The
change in phase difference over the target time interisl

(19

Using this expression, the initial optimal vector can be writ-
ten as

1 ie—iéo 1 ei(0+A/2)
V= E( i ) = \,_E<ei(et—A/2)>y
showing that the CRWs shift equal and opposite distances
during optimal evolution.

These results can be understood by considering the evo-
lution of enstrophy which can be expressed ugibgas

A=¢— €= 2¢.

(20)

S+ QY =200 sine = QG+ Qasine (21

[where(Q;-Q,)>=0 was usell The maximal instantaneous
growth rate is given by the interaction coefficiamtand is
obtained when the growth is synchrondi@®;=Q,=Q) and
e=7/2. o is indeed the largest eigenvalue(@f+A™)/2, and

its associated eigenvector is indeed the first column vector of
(16b) (as predicted by the general theory of Fl9@he
CRWs have equal amplitudes in the initial singular vector
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(20) and (5) shows that the growth must continue synchro-
nously. As indicated by7a and Fig. 2, whenK—0, o

— A /2, which is the upper theoretical limit for growth rate in
the Rayleigh modelDrazin and Reit!). For finite target
times the integration of21) for synchronous growth yields

t

Q) = Q(O)GXIO{ o J
t

=0

sin e(t)dt] . (22
FIG. 3. The relative CRW phase angtein the growing regime of & e
Optimal perturbations will evolve so that the phase differ-=7- & corresponds to the CRW phase difference in the growing normal
. L .o . mode configuration, while,=(7-¢€,) corresponds to its biorthogonal con-
ence Is symmetric in time _about/Z, maximizing sire, as figuration. The maximal instantaneous growth occurg=air/2. For finite
shown by the SVD analysi€l9). For synchronous growth, target time(19) indicates that the initial and final optimal phases, &) are

subtracting(6a) and(6b) and substituting12b) gives symmetric with respect tar/2. Hence for all target times, wheq is in the
) hindering regimeg increases during the optimal evolutidfiled arrows,
e=2c0(cose—f). (23) andA=(g- ) is positive. For target time infinitye,, €)= (ep, €,).

Substituting(23) into the integrand of22) yields

—-Cos¢€y
&t) =exp - } f d(cose) ' (24) the modal growth. Equatio(23) can be used to write
Q(0) 2)cose, COSe—f

. [ €t e
where(19) is used to determine the integral boundaries for 1 [Cose e+e, 5'”( 2 )
the optimal evolution. Integration gives the optimal growth O=exp - —J de | = —<€ e\

0 +
coy ——
2 )

factor cos<

Q(t) _ | COSEOI (25 (29)
Q(0) f+ cosey
This factor can also be expressed in terms of the CRW dif-
ference at the final time using(19), 6=cod(e
1. Optimal growth in the unstable modal regime —€,)/2]/sin(&+e€,)/2]. Figure 4 showd) in the helping re-
(f2<1) gime (0<e,<w/2) as a function of(e—€,)/7 and (g
+€,)/27m. The 0 factor is the greatest, for givetg +e,),
wheree = ¢, (the phase difference eventually approaches the
phase-locked configuratipnlt also increases ase +e€,)
— 0 because the optimal perturbation spends more time with
o (0 0 ) a phase difference such that sin sine, (recall that in the

The matrix of singular values, in (10), can be defined
by the eigenvalue matrix oBAtEA (or eATteAt) which is
equal to32. In the regime wherd?<1,

— Lt
2 =06e", 0 gt (26) helping regime the phase difference for the optimal pertur-

bation decreases with time througti2).
wherelL is the diagonal eigenvalue matrix Af and 6 is the

factor by which the optimal growth exceeds the modal
growth rate.

In this regime(8) shows thatf =cose,. If propagation is
hindered by interaction in the phase-locked configuration, Equation(15) shows that the two CRWs forming the
ml2<e, <, (23) shows that the CRW phase difference in- neutral normal modes fd®>1 are in phasé¢e=0) but with
creases with time from any initial phase in the rangg — different amplitudegsuch thatQ,/Q;=«a or 1/a). However,
< €< €, Since the optimal evolution must crosd2, cf.  the singular vectors o#, given by(17a and(17b) for any
(20), this yieldsey< 7/2< €. Therefore, during the optimal f, are composed of CRWs with equal amplitudes. Ferl
evolution the perturbation structure becomes more tiltedhe singular value matrix becomes

2. Optimal growth in the neutral modal regime (f?>1)

against the shear. By these same considerations, in the help- 0

ing regime, O<e,<w/2, the CRW phase difference de- 2:(9 _1>, (29a)
creases with time for any initial phase in the range< ¢, 09

<2m—-¢€,. Thereforee, < m/2< €, meaning that the pertur-

bation structure untilts while optimally growing. The CRW 9= [f—cose (29b)
optimal evolution is summarized in Fig. 3. f+cosey’

Optimal growth can also be related to modal growth

(whenf2<1) by writing (22) as and therefore the maximum possible grow®h called the

global optimal by FI196, is obtained wheqy= such that

t
% = exp{ O-ftzo (sin e(t) — sin e)dt] g7 Sin et G- /%; (30

— pav Sin et
oe , (27) Integrating 1E with respect toe from e,=1 to =0 [using

where 6 is the factor by which the optimal growth exceeds (23)] gives the global optimal target time
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FIG. 4. The ratio between the optimal growth and the normal mode gréwtha function of €, —¢€,)/ 7 and (€ +¢€,)/ 2, in the regime & e, < /2 where
each CRW must help the counterpropagation of the other to enable phase-ldekirg.are the CRW phase difference of the normal mode and the final
phase difference of the optimal perturbation.

global optimal, the CRWs must begin with a decaying con-
figuration (tilted with the shear pass through rapid growth
at w/2 and then end up in a decaying configuration. There-
In Fig. 5 the examplg=1.1 is chosen to illustrate the fore, the optimal growth is smaller than the global optimal.
dependence of optimal growth and phase on normalized taEventually, for target timer(f>—1)"'2, the CRWSs start at
get time ot. The optimal growth is indicated in the upper e;=—7/2, the amount of decay exactly cancels the amount
panel by the solid line and the value of the global optimal,of growth and no net growth is obtained at the target time.
G=4.58, is indicated by the dashed line. The first global
optimal is ‘?‘Chi.e ved aftart=m/2(f?-1)"1/2=3.43. The-op.ti- 3. Wavelength dependence of optimal growth
mal evolution is synchronous and the lower panel indicates
that (ey+€)/2=+m/2. The global optimal is achieved when ~ The effective optimal growth rate(t) can be defined as
(GOuft):(Tf:O)- 1
In the neutral regiméf > 1), if the CRWs are assumed ) = " In oy (1), (31)
to have equal amplitudes as is the case for the singular vec-
tors (17), (23) shows thate<0 implying that the CRWs are where o(t) is the largest singular vector of the propagator
continually advected past each other by the shear. As disnatrix €', (9¢). In Fig. 6@ y(t) is shown as function oK
cussed earlier, this occurs because the counterpropagatior the target times=1/A,3/A,5/A. These growth rates are
rates and interaction strength are too weak to attain a phaseempared with the maximal instantaneous growth satend
locked state at high wavenumbers. Therefore, in order téhe normal mode growth rateRe(\;)=kc, (11)]. As ex-
obtain optimal growth the CRWSs should crassw/2 sothat pectedkc < y<o for all target times between zero and in-
€,> €. For short target timedg, ) are both close tar/2, finity, except at wavenumbé€=1 where the system is nor-
but as the target time increases, the phase change increaseal and all growth rates are identical. The shorter the target
until the global optimal configuratioltey, &)=(7,0) [Fig.  time, the greater is the fraction of time spent within the vi-
5(b)]. As the target time becomes slightly larger than the firstcinity of phase difference=/2 and therefore the effective

1
T:(n+—),L_, n=0,1,2.... (30b)
2/\f?-1
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optimal growth, f=1.1

(a) ct
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- — — - g(0)n
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FIG. 5. Optimal evolution in the modal stable regime. In this exanfiplé.1, (12b), and the consecutive normalized target timés (0, 20. (a) The optimal
growth g (29b is indicated by the solid line. The global optim@k4.58 (303 is indicated by the dashed line and is achieved first at the normalized time
T=0t=3.43.(b) The initial and final CRW optimal phase differencgsande, vs target time are indicated, respectively, by the dashed and the solid lines. Note
that the phase difference always decreases with time during optimal evolution.

growth rate is larger. Since interaction strengtlilecreases ber then the CRW phase difference decreases by morenthan
exponentially withK, (7a), y decreases with wavenumber for and cycles of decay and growth are experienced, since the
all target times. The ratio between the optimal growth andvaves are periodic.

the normal mode growth is equal either 8p(28), when f?

<1 ortog, (29b), whenf?>1 (the modal short-wave cutoff D. Optimal growth in the energy norm

where f=1 occurs atk=1.28. In the unstable regime the
maximal value of@ is equal to the magnitude of the bior-
thogonal vector of the most unstable mode,,.=|r,|

While the normal mode growth rate is independent of
the measured norm, the nonmodal optimal growth generally
=1/sine,. In the stable regime the greatest possible ampIifi-CharIges from.o.n'e r]’orm to another. The most sunable.norms
cation is given by the global optima, (303, are “wave actlvme_s' that are globally conserved for dlstu_r- .

The optimal change in the CRWS' relative phasg19), bgnces to a speC|_f|.ed basic state and are .also quadratic in
is plotted in Fig. §b) for the three target timed is positive disturbance quantities. Pseudomomentum is conserved fgr
for K< 1, where the CRWs phase lock in a hindering con-WaVves on plane parallel shear flows a.nd for Ros;by waves is
figuration, 7/2< e, <, so that optimal growth is achieved proportlonal_ to the cross-stream air-parcel dlsplacgment
when the CRWs start with a small phase difference and ifduared weighted by the mean cross-stream PV gradient. If
increases, passing through the most rapid growtvat A is the PV gradients at the two home bases of a CRW pair have
negative for kK <1.28 where the CRWs phase lock in a the same magnitudéut opposite signs as in the Rayleigh
helping configuration, & e, < /2. Maximal growth occurs Model, then the pseudomomentum of each CRW is propor-
for target time infinity in the unstable regime and is achievedional to its enstrophy. However, the total pseudomomentum
by a change in CRW phase difference/of,=2¢,—. The  of both waves tends to zero as the CRWs approach the
longer the target time interval, the closempproacheq, ., ~ Phase-locked state of the growing normal mdgteld™).

In the stable regime, optimal growth is achieved by CRwsTherefore, it is natural to use total enstrophy as a positive
with equal amplitudes but these cannot phase lock and theftefinite measure of disturbance amplitude as in Sec. Il C.
phase difference always decreases as they are advected past However, frequently eddy energy is used as a norm al-
each other. Maximal growth can be achieved by a change ithough it is not globally conserved for disturbance quantities
phase difference oh,,,,=—= and occurs at the first global alone(conservation is ensured for pseudoengrdiere, the
optimal time (30b) for that wavenumber. If the target time optimal evolution in the energy norm is examined from the
exceeds the first global optimal time for the given wavenum-CRW perspective.
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effective growth rate
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FIG. 6. (a) The normalized effective optimal growth rajét), (31), in the Rayleigh model, as a function of wavenumber, for the normalized target times
1/A, 3/A, 5/A, indicated, respectively, by the dashed, dashed-dot, and solid lines. These are compared with the normalized instantaneousogi@ath rate
(bold dotg, and the normal mode growth rdte (asterisks (b) The optimal change in phase difference between CRWs; — €, as a function oK, for the

three target times. The change in phase difference required for maximal growih,fse,—€.=7—2¢, and is achieved as target time tends to infinity.

The inviscid, incompressible kinetic energy perturbation  dE  d(Q?) 1 . deQ? _, .
can be written as P TR(l +e  cose) - G KE Ksine. (36)
E=3Vy, Vi =-3a.¥, (32 The first term on the right-hand sidBHS) of (36) is the

energy growth attributable to the CRW displacement ampli-
tude growth(enstrophy growth The second term is associ-
ated with the OA? mechanism, where kinetic energy can
Exq'™Mq = €ee, (33)  grow simply by changing the tilt of a PV wave without any
change in enstrophy. If the CRW phase difference decreases
(e<0) while these are in the growing configuratigsin e
>0) then the velocity induced by CRW-1 at the home base
1/ 1 €K of CRW-2 becomes more in phase with the self-induced ve-
M = E( K 1 ) (34)  locity of CRW-2. As a result of this constructive superposi-
tion the net magnitude of the velocity vector increases, yield-

Thus, in the energy norn9a becomese=De, where D ing growth in the kinetic energy.
=TAT %, and its optimal evolution is obtained by the SVD In fact even without any basic state vorticity gradient,
of the propagator matrig® (while the eigenvalues ok and  the Orr mechanism can yield growth. Consider, for instance,
D are the same, their singular values are generally differenttwo “passive CRWs” located 3t= +b in an infinite constant

In order to understand the different optimal dynamics inshear layetu=Ay (-2 <y<). In this case, neither CRW
the two norms we write32) explicitly in terms of(3), for  amplitude growth nor counterpropagation is possible since

where(f,g)=[f"gdV. Substituting(3) into (32), the energy
norm is seen to be proportional to

wheree=Tq is the energy generalized coordinate vecior,
=M*2 andM is the Hermitian matrix

synchronized growth, to obtain both mechanisms involve the advection of basic state vortic-
Q? ity. As a result the two neutral CRWs are simply advected by
E= ?(1 +e X cose), (35) the basic state flow at their home basgs,b). Therefore the
phase difference decreases continualty-KA, which leads
and therefore to kinetic energy growth via the Orr mechanisrg
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=AQ% X sine, when 0<e< . Such “passive CRWs” can role of the continuous spectrum in the optimal evolution. In
be used to represent the continuous spectrum, as discussedlie Appendix we suggest a scheme which generalizes the
the Appendix. CRW analysis to include the complete spectrum solution,
It can be shown that the matri® is normal for the while preserving the principle understanding obtained from
wavenumber of fastest growing normal mod&=0.8), the interaction between pairs of CRWs.
which implies that the maximal growth rate is modal in the
energy normalternatively, by substitutings) and (21) into
(36) it can be shown tha#/JK(E/E)=0 is obtained forK
~0.8]. In the enstrophy norm the fastest growing normal  The fundamental physical mechanisms behind the non-
mode does not achieve optimal growth because, althougmodal linear dynamics of parallel shear flows have been ex-
interaction increases with wavelength, so does the Rosskplored in terms of counterpropagating Rossby waves
wave propagation rate creating the conflicting requirementCRWs, focusing on the discrete spectrum dynamics. The
that CRWs must hinder each other in order to phase lockemphasis of previous studies discussing CRR&fs. 1, 4, 6,
However, in the energy norm the fastest growing normab-11, 23, and 24was on understanding modal instability in
mode is the optimal configuration for growth. This resultsterms of the mutual amplification of phase-locked CRWs.
from the competition between the two processes attributablelowever, other authots*°have shown that rapid growth of
to energy growth on the RHS §86). In Fig. 7 the maximal small disturbances on shear flows is dominated by the tran-
instantaneous growth rate in the energy nédashed lingis  sient behavior described by nonmodal dynamics. The GST,
plotted as a function of wavenumber alongside maximal in-established by FI19&° provides a powerful mathematical tool
stantaneous enstrophy growth rédeshed-dot lineand nor-  to compute the initial excitation, growth, and evolution of the
mal mode growth ratgsolid line). The maximal energy perturbation which grows fastest in a given norm, over a
growth rate is smaller than the maximal enstrophy growthgiven time interval. However, although predictions can be
rate in the regime where CRWSs can phase lock in a hinderinderived following the mathematical formalism of GST, few
configuration(K<1) and generally larger in the helping re- attempts have been made to describe these results in terms of
gime (K>1). In the hindering regime the optimal evolution interaction between components whose properties can be as-
in both norms yields>0, and therefore the Orr mechanism sociated with physical mechanisms. The key advantage of
reduces energy growth. In the helping regime, the optimathe CRW perspective is that the physical mechanism respon-
evolution yieldse <0 and thus both terms at the RHS(86)  sible for the propagation of a Rossby wave is readily under-
act to promote energy growth. stood. Propagation results solely from advection of the basic
The general stability analysis presented here applies nattate vorticity by velocities induced by the vorticity anoma-
only to the Rayleigh model but to the discrete spectrum ofies defining the CRW. Interactions between CRWs occur
any conservative plane parallel shear flow which supportshrough the “action at a distance” property of the vorticity
modal instability(Heifetz et al”). Nevertheless, even in the inversion; operator-induced velocities are felt outside the re-
Rayleigh model the analysis does not take into account thgion where the vorticity anomalies exist. These far-field in-

IV. CONCLUDING REMARKS
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duced velocities advect the basic state vorticity at the locaerete spectrum optimal dynamics of any unstable conserva-
tion of another CRW, thus affecting its propagation rate andive plane parallel shear flow. The Rayleigh model was used
amplitude. for illustration because it indicates how to generalize the
A key element in the CRW interaction is that their opti- CRW description in order to include continuous spectrum
mal configuration for growth in the enstrophy norm, occursdynamics. In the Rayleigh model the basic state vorticity
when the CRWs have equal amplitudes and are tilted againgradient is concentrated at the edges of the shear zone in two
the shear with a phase difference of2. In this configura- & functions and, therefore, Rossby wave propagation is pos-
tion the CRWs amplify each other but cannot alter theirsible only at these locations. In a general shear profile we can
propagation rates. However, unless the CRWS' intrinsicuse the Green function technique and represent the vorticity
phase speeds are equal, they will not be able to maintain @isturbance as composed of infinite number of vortiaity
phase difference of/2 and, as a result, will move relative to functions described as “CRW kernels.” These CRW kernels
each other, exhibiting nonmodal evolution. The system idnduce streamfunction anomalies of the same form as those
therefore normal only in the special case of equal CRW inof the Rayleigh edge waves, and thus the general linear dy-
trinsic phase speeds, whereas for all other wavelengths th&gmics can be regarded in terms of the interaction between
optimal evolution tends to maximize the duration at the vi-infinite number of CRW kernels. Each CRW kernel affects
cinity of /2. the counterpropagation speeds and growth of all other CRWs
If each CRW must hinder the other’s counterpropagatiorand in turn is affected by them. The interaction depends on
rate in order that their phase speeds become equal and phdBe phase differences and the interaction coefficients between
locking can occur, optimal growth involves an increasingthe kernels.
phase difference passing througii2 and consequently the If the flow is discretized in the cross-stream direction
growing perturbation evolves to be more tilted against thdnto a finite number of strips, the CRW kernel equations can
shear. If, on the other hand, phase locking requires mutudle written into a matrix form which is the direct generaliza-
help in counterpropagation, the phase difference decreasé§n of the two CRW interaction matrix of the Rayleigh
during the optimal evolution and the growing structure be-model, and the SVD analysis of the propagator matrix yields
comes less tilted against the shear. For short target times tfiee optimal evolution of the complete spectrum. Although
CRW phase difference does not stay far frait2. For large  the general optimal evolution might be complex, its interpre-
target times the initial optimal phase tends to that of thetation remains relatively simple since the nature of interac-
biorthogonal vector of the unstable modes €,, wheree, is  tion between any CRW pair is transparent.
the phase difference in the normal mode configuration. The
efficiency of the interaction is determined not only by the o\ckNOWLEDGMENTS
CRW phase difference but also by the strength of the CRW
interaction coefficient, which is a function of wavelength. E.H. wishes to thank Michael Mcintyre and Orkan Me-
CRWs are vorticity waves and thus describe enstrophynmet Umurhan for illuminating discussions. J.M. is grateful
growth in a natural way. However, a simple transformationfor an Advanced Fellowship sponsored jointly by the Natural
yields the nonnormal growth in the energy norm from theEnvironment Research Council and the Environment
CRW perspective. Energy growth not only depends on CRWAgency.
amplification (through increasing air parcel displacements
and thus enstrophy growthbut also on a change in their
pha§e d_ifference. The Iattgr resu_lts from thezﬁrme_cha_nism APPENDIX: CRW KERNEL DYNAMICS
of k_|n_et|c energy growt_h involving the (_:hange in tilt of @ FoR A GENERAL SHEAR FLOW
vorticity disturbance, without a change in enstrophy. When
the CRWs are in a growing configuration and their phase Consider a general inviscid, incompressible, shear pro-
difference decreases, the velocities they induce on each othfile u(y) with a mean vorticity profileg(y). Then, writing all
become more in phase. Consequently, the magnitude of thserturbation variables in the Fourier formy(x,y,t)
total velocity vector, and thus the kinetic energy, increase= [ 7(y,t,k)€**dk, the vorticity perturbation can be written
For wavelengths where CRWs must help each other to couras

terpropagate in order to maintain modal phase locking, the w

nonmodal evolution is such that the CRW phase difference gy t,k) = [a(y’,t,k) sy’ —y)ldy’

decreases with time while crossing/2 (CRWs become y/=—o0

more in phase Therefore, energy grows due to both CRW o

amplitude amplification and the Orr mechanism. In cases EJ qly’,t,kdy’. (A1)
y'=—

where CRWs increase their phase difference during their op-

timal evolution, the growth in energy is usually smaller than-l-he “vorticity density kernel§(y’,t,k) induces a stream-

the growth in enstrophy, since the Orr mechanism acts t . o~ , : p 1o
decrease the velocity vector. In the Rayléighodel of a chtlon density y(y,y’,t,k) which must satisfyg=-k"

single shear layer, the combination of the two mechanismg ¥yy- Therefore,

implies that the maximal energy growth is achieved by the ~ , _a )

most unstable normal mode. Yy LR =0l LGy, (A2)
The analysis presented here can be applied to the disvith the Green function
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T Q__Al [ Qy)
G(y,y)=- (A3a) =__ —“ =22k bl g e, - e(y’)]dy’
2k Q]_ 2 y':—oc Ql !
for unbounded flows and + %e‘K siffe, - 62]] , (A8a)
Q1
Glyy)= o
Y= | sinh(2kb)
. ’ . _ ’ = - A o0 ’ ,
{ sinflkb+y")sinffkb-y)]  fory <y <b Q_A f QYY) ey bl sirfe, - ey’ )]y’
sinfk(b-y’)]sinfk(b+y)] for —b<y=<y’ Q 2|Jy-— Q
(A3b)
+ %e_K sine, - 61]] , (A8hb)

for bounded flows ay=+b [wherev =, (y+b)=0]. Hence, Q
for open flows, the inversion dfAl) can be written as

R o . A * Q(y/) —Kly' + ’ ’

YLK = f (Y LKIG(y.y )dy . (A€)  @=-ke- 5{ f o, & coder - ely)ldy

y':—oc y =—x» 1

Substituting(A1) and(A4) into the linearized vorticity equa- + %e'K code; — 62]] , (A9a)
tion (2), Q

4= - K[U(Y)G + 0y(y) ], (AS5)

'ezz-ké+%“ WDyt goge, - ely) dy
g Q

and writing the vorticity in terms of amplitude and phase,
a(y,H=Q(y,t)<¥Y, we obtain for the real and the imagi-

nary parts in(A5), + %e‘K code, - 61]] , (A9b)
2

Q(y) = —kay(y) f Qy")G(y,y")sine(y,y")dy’, L _ _
y'=— together withQ(y)=0 and e(y)=—ku(y) for y# +b. In the

(A6a) case of zero continuous spectriAB) and(A9) become(5)

and (6). The continuous spectrum PV kernels are passive in
the sense that, in the absence of local basic state vorticity
S = — gradient, they cannot grow or counterpropagate and therefore
() k{my) oY) are simply advected by the basic state velocity. Nevertheless,

B as indicated byA8) and (A9), the velocity they induce af-

/ , N fects the discrete spectrum growth and phéBishop and

X / G(y,y’)co yHdy' . (A6b ) . . i

J [QUQIGLy.y")cosely.y)dy } ( ) HeifetZ* showed how such interaction leads to a linear ab-

solute baroclinic instability of the discrete spectrum in the

(A6) indicates that each CRW kernel changes its amplisem;.infinite Ead§” model, whose barotropic analog is the
tude and phase due to cross-stream advection of the meggmi.infinite Rayleigh modgl Furthermore, as discussed in
vorticity in its own layer, where the cross-stream velocity isggc. D, even in the absence of a basic state vorticity gra-
attributable to all other kernels and attenuated according tQient the continuous spectrum can grow in the energy norm
the Green functiorG(y,y’) and the relative phase(y,y’)  jthout a change in enstrophy, via the Srmechanism.
=e(y)—e(y’). Hence, the mechanism of amplitude growth  pjscretizing (A6) into N strips in they direction and

and counterpropagation is the same as for a CRW pair of thgejghting the mean vorticity gradient by the strip width
discrete spectrum, except that here each CRW kernel affectgy(j):y(ﬁl)_y(j), we can then writgA6) in the matrix

and is being affected by, an infinite number of other kernelsgq,y,
In the case of the Rayleigh model, Whe@:/\[ﬁ(y
-b)-8(y+b)], we can write

y’:—oo

| | G=Ad, (A10a)
a(y,t.k) = [QubiE1V sy +b) + Qu(t)e 2V 5y - b)]
+Q(y,t)e<v, (A7) where
where the two terms at the square brackets compose the dis- = i b
crete spectrum solutiori3a), and the latter term on the RHS A =-ik[U+Q,G] (A10b)
represents the continuous spectrum solutiog=attb. Sub-
stituting (A7) and (A3a) into (A6), we obtain and
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0
e}
q= , (A100)
On-1
On
U, 0 0
0 U, 0
u=| . . -, (A10d)
Un-1
0 Un
ayl O D) 0
0 ap 0
Q=1 - . . (Al0e)
Oyn-1
O ) a)/N
G(1,1) G(1,2 G(1,N-1) G(1,N)
G(2,1 G(2,2 G(2,N-1) G(2,N)
G= : . : , (A10f)
G(N-1,1) G(N-1,2 G(N-1,N-1) G(N-1,N)
G(N,1) G(N,2) G(N,N-1) G(N,N)
[
whereG is Hermitian[e.qg., G(i,j)=G(j,i)=— ~Kly(H)-y(l/ 2k ®B. J. Hoskins, M. E. Mclintyre, and A. W. Robertson, “On the use and

in open flow. GST analysis can be applied in the enstrophy significance of isentropic potential vorticity maps,” Q. J. R. Meteorol. Soc.

. 111, 877(1985.
norm by exploring the SVD of the propagator matf¥, and ®E. Heifetz, C. H. Bishop, B. J. Hoskins, and J. Methven, “The counter-

in the energy norm by calculating the SVD of the trans- propagating Rossby wave perspective on baroclinic instability. Part I:
formed propagation matrie™, as described in Sec. Il D. Mathematical basis,” Q. J. R. Meteorol. Sat30 211 (2004. o
Discretization of(A4) immediately implies that the 22 J. G. Charney and M. E. Stern, “On the stability of internal baroclinic jet

. . . in a rotating atmosphere,” J. Atmos. Sdi9, 159 (1962.
matrix M, (34), generalizes to & and therelfore In energy ®R. Fgrtoft, “Application of integral theorems in deriving criteria of sta-

coordinates the evolution equation becontesDé. where bility for laminar flows and for the baroclinic circular vortex,” Geofys.
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= . 9 . . . W
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