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The optimal dynamics of conservative disturbances to plane parallel shear flows is interpreted in
terms of the propagation and mutual interaction of components called counterpropagating Rossby
waves sCRWsd. Pairs of CRWs were originally used by Bretherton to provide a mechanistic
explanation for unstable normal modes in the barotropic Rayleigh model and baroclinic two-layer
model. One CRW has large amplitude in regions of positive mean cross-stream potential vorticity
sPVd gradient, while the second CRW has large amplitude in regions of negative PV gradient. Each
CRW propagates to the left of the mean PV gradient vector, parallel to the mean flow. If the mean
flow is more positive where the PV gradient is positive, the intrinsic phase speeds of the two CRWs
will be similar. The CRWs interact because the PV anomalies of one CRW induce cross-stream
velocity at the location of the other CRW, thus advecting the mean PV. Although a single Rossby
wave is neutral, their interaction can result in phase locking and mutual growth. Here the general
initial value problem for disturbances to shear flow is analyzed in terms of CRWs. For the discrete
spectrum swhich could alternatively be described using normal modesd, the singular value
decomposition of the dynamical propagator can be obtained analytically in terms of the CRW
interaction coefficient and the intrinsic CRW phase speeds. Using this formalism, optimal
perturbations, the disturbances which grow fastest in a given norm over a specified time interval, can
readily be found. The most natural norm for CRWs is related to air parcel displacements or
enstrophy. However, if an energy norm is taken, it is shown to grow due to both mutual
amplification of air parcel displacements and the untilting of PV structuressthe Orr mechanismd
associated with decreasing phase difference between the CRWs. A generalization of the CRW
description to the optimal dynamics of the complete spectrum solution is outlined. Although the
dynamics then involves the interaction between an infinite number of “CRW kernels,” the form of
the simple interaction between any two CRW kernels is the same as in the discrete case.
© 2005 American Institute of Physics. fDOI: 10.1063/1.1937064g

I. INTRODUCTION

The concept of counterpropagating Rossby waves
sCRWsd was developed originally by Bretherton1 to explain
the baroclinic instability mechanism for cyclone growth in
the atmosphere. He described the instability in terms of in-
teraction between two edge waves, one located at the earth’s
surface and the other on the atmospheric tropopause. Each
wave by itself is neutral and propagates zonallysi.e., along a
latitude circled, via the Rossby2 mechanism. At the ground
the wave propagates eastward and the mean flow is weak
while at the tropopause there is a strong eastward jet but the
wave propagates westward, counter to the flow. The waves
interact in an “action at a distance” fashion, by inducing
meridional windsi.e., along a longitude circled that advects
the basic state potential vorticitysPVd at the other level.
Depending on their phase difference, the additional meridi-
onal displacements of PV contours modify the zonal propa-

gation rate of the other CRW and can also promote its
growth. Growing normal modes are obtained if a suitable
phase difference exists where interaction makes the CRW
phase speeds equal so that they phase lock, and also results
in mutual growth. The mechanism also applies to the baro-
tropic Rayleigh3 model where CRWs propagate along the
edges of an isolated strip of uniform vorticityscf. Heifetz
et al.4d.

Hoskinset al.5 revised and clarified the CRW concept,
and Heifetzet al.6 generalized the CRW description to cover
conservative quasigeostrophic three-dimensionals3Dd distur-
bances to all plane parallel shear flows which are linearly
unstable. They showed that CRW evolution equations can be
derived from the Hamiltonian equations where the Hamil-
tonian, generalized momenta and coordinates are the quasi-
geostrophic disturbance pseudoenergy, the CRW pseudomo-
menta and phases. This generalization also rationalized the
necessary criterion for instability of Rayleigh3 sand its baro-
clinic analog of Charney and Stern7d and the Fjørtoft8 crite-
rion. Methvenet al.9 have further extended the CRW theory
to general zonally symmetric basic states on a sphere where
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Ertel PV is conserved following air parcels along isentropic
surfaces. Methvenet al.10 have shown that the CRW proper-
ties derived from linear theory are remarkably robust and can
be used to predict some features of the nonlinear evolution of
baroclinic eddies on realistic midlatitude jets.

As discussed by Heifetzet al.,6 the interaction of a CRW
pair describes the discrete spectrum evolution for any prob-
lem where the initial conditions are a linear superposition of
a growing normal mode and its complex conjugate. The fo-
cus of the companion paperssHeifetz et al.,11 Methven et
al.9,10d has been on interpreting growing normal mode struc-
tures and dispersion relations in terms of CRW interaction
for more realistic representations of the midlatitude atmo-
sphere. However, the extensive work by Farrell,12–15

Trefethenet al.,16 Schmid and Henningson,17 Le Dizes,18 and
others showed how the fundamental nature of shear allows
rapid nonmodal transient growth due to nonorthogonal inter-
action between the modes. Farrell and Ioannou19 shereafter
FI96d developed the generalized stability theorysGSTd for
linear dynamical systems and showed how the optimal non-
modal growth can be obtained from a singular value decom-
position sSVDd of the propagator matrix of the dynamical
system.

In this paper the aim is to demonstrate how the CRW
perspective might be helpful in understanding the physical
mechanism behind optimal growth in shear flows. In Sec. II,
a short review of the CRW perspective is presented using the
Rayleigh3 model for illustration. This example was chosen
because the dynamical propagator is a simple 232 matrix
whose SVD can be derived analytically. Then, in Sec. III, the
GST is applied to this model and the optimal growth is in-
terpreted in terms of CRW interaction. Based on this analysis
the generalization of the CRW perspective to optimal growth
on more general shear flows is outlined in the Appendix. The
conclusions are summarized in Sec. IV.

II. CRW INTERACTION ILLUSTRATED
USING THE RAYLEIGH MODEL

Heifetz et al.4 discussed CRW interaction in the
Rayleigh3 model, focusing mainly on their phase-locking be-
havior into the growing normal mode configuration. The
analysis is summarized here before examining optimal per-
turbations.

Consider a 2D, inviscid, incompressible flow whose ba-
sic state velocity and vorticity profiles are

ū = 5Lb for y ù b

Ly for − b , y , b

− Lb for y ø − b,
6 s1ad

q̄ = 50 for y ù b

− L for − b , y , b

0 for y ø − b.
6 s1bd

Here sx,yd are the streamwise and cross-stream Cartesian
coordinates associated with the velocityv=su,vd=sū
+u8 ,v8d, where overbars and primes indicate the basic state
and perturbation, respectively. Linearizing the vorticity equa-

tion Dq/Dt=0 with respect to the basic state ofs1d sD /Dt
=] /]t+v ·=, q= ẑ·= 3v, and ẑ is the vertical unit vectord
gives

S ]

]t
+ ū

]

]x
Dq8 = − v8

]q̄

]y
= v8Lfdsy + bd − dsy − bdg. s2d

The discrete spectrum solution ofs2d for wavenumberk can
be written as

q8 = fq1sk,tddsy + bd + q2sk,tddsy − bdgeikx, s3ad

c8 = −
1

2k
fq1sk,tde−kuy+bu + q2sk,tde−kuy−bugeikx, s3bd

sthe continuous spectrum of the solution is discussed in the
Appendixd. The perturbation streamfunctionc8 satisfiesu8
=−]c8 /]y, v8=]c8 /]x, andq8=¹2c8. Writing then

q1 = Q1sk,tdeie1sk,td, s4ad

q2 = Q2sk,tdeie2sk,td, s4bd

the perturbation can be regarded as two vorticity edge waves
with amplitudesQ1, Q2 and phasese1, e2. By substituting
s3d ands4d into s2d and taking the real and imaginary parts at
y= ±b, the CRW evolution equations are obtained,

Q̇1 = sQ2 sine, s5ad

Q̇2 = sQ1 sine, s5bd

ė1 = − kc1
1 − s

Q2

Q1
cose, s6ad

ė2 = − kc2
2 + s

Q1

Q2
cose, s6bd

with

s =
L

2
e−K, s7ad

c1
1 = ūs− bdS1 −

1

K
D , s7bd

c2
2 = ūsbdS1 −

1

K
D , s7cd

where K=2bk is the normalized wavenumber ande=se2

−e1d is the CRW phase difference.
Equation s5d indicates that each wave can only grow

through interaction with the other and the strength depends
upon the interaction coefficients and the CRW phase differ-
encee. Equations6d indicates that in the absence of interac-
tion the waves would propagate with their intrinsic phase
speedsc1

1, c2
2 given by s7bd and s7cd. The intrinsic phase

speed comprises two terms: a Doppler shift due to the basic
state flow at the edge and a propagation counter to this flow
that is proportional to the wavelength. The latter term results
from Rossby2 wave propagation to the left of the basic state
vorticity gradient vector.
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If the relative phases of the two waves are known then
the sense of the interaction between the CRWs can be ascer-
tained following the arguments in Hoskinset al.5 In Fig. 1
the CRWs are shown with the phase differencese<0.65pd
corresponding to the phase-locked configuration of the fast-
est growing normal mode. “CRW-1” exists on the negative
vorticity gradient at the southern edge and “CRW-2” exists
on a positive vorticity gradient at the northern edge. The
strongest northward flow and hence negative vorticity ten-
dency induced by the CRW-1 at the northern edgesdashed
arrowd lies between 0 andp /2 to the east of the negative
vorticity extremum of CRW-2. It therefore amplifies CRW-2
but reduces its propagation rate westwards. Similarly, the
northward flow and hence positive vorticity tendency in-
duced by CRW-2 at the southern edge is between 0 andp /2
to the west of the positive vorticity of CRW-1. This leads to
growth but slows the eastward propagation of CRW-1. The
interaction of the two CRWs leads to the growth of each but
slows the propagation of each against the mean flow at their
respective latitudessreferred to as “home bases” by Heifetz
et al.6d. As each wave slows the other in its counterpropaga-
tion, this is referred to as a “hindering” configuration.

For a phase difference between 0 andp /2, the negative
vorticity tendency induced by CRW-1 at the northern edge is
betweenp /2 and 0 to the west of the negative PV of CRW-2.
There is again growth but this time the westward propagation
of CRW-2 is enhanced by the interaction. Similarly, it can be
argued that the CRW-1 grows and propagates more rapidly to
the east as a consequence of its interaction with CRW-2.
Thus, the interaction of the two CRWs again leads to the
growth of each and “helps” their self-propagationscounter-
acting differential advection by the shear in flowd.

Since the interaction acts to increase the westward phase
shift when it is between 0 andp /2 and decrease it when it is
betweenp /2 andp, if it is strong enough it can be expected

to lead to the phase remaining in the range of 0→p and
continued growth. The equilibrium position for the phase
would correspond to the growing normal mode. For eastward
phase shifts, similar arguments apply and there is decay.
However, in this case the hindering/helping mechanism tends
to shift the phase from the decaying range of −p→0 toward
the growing range of 0→p. This indicates the nonmodal
evolution mechanism in the initial value problem which
leads towards convergence to the phase-locking configura-
tion of the growing normal mode.

Note that although the instantaneous growth is the fastest
when the CRW phase difference isp /2, cf. s5d, in this con-
figuration the CRWs cannot affect each other’s propagation
speed, cf.s6d, and therefore can remain phase locked only if
their intrinsic phase speeds are equal, i.e., whenK=1 fs7bd
and s7cdg. The gravest normal mode is obtained whene
<0.65p sK<0.8d, in a configuration that hinders the self-
propagation of both CRWs.

The behavior of CRWs and normal modes in the Ray-
leigh problem is depicted in Fig. 2 as a function of wave-
number. The interaction coefficientssolid curved decreases
exponentially with wavenumbers7ad reflecting the scale de-
pendence of the strength of cross-stream velocity induced by
a CRW on the opposite edge of the shear region. The Rossby
wave propagation rate is proportional to the wavelength and
therefore as wavenumber increases the intrinsic phase speed
of each CRW becomes dominated by advection by the mean
flow at its home basesc2

2 is shown by dashed curved. For
high wavenumberssK.1.28d the intrinsic counterpropaga-
tion of each CRW is weak relative to the shear and phase-
locked states are only possible when there is no phase differ-
ence scose=1d so that the interactions6d lends maximum
help to the propagation of each CRW counter to the flow at
its home base. Also, the CRWs must have different ampli-
tudes so that the interaction terms ins6d can counteract the
difference in intrinsic phase speeds. The resulting pair of
normal modes cannot grow because the CRWs are in phase
s5d. One is dominated by CRW-2 and advection on the north-
ern edge, and therefore has a positive phase speedscrosses in
Fig. 2d, while the other is dominated by CRW-1 and west-
ward advection on the southern edgesnot shownd.

At wavelengths just longer than the short-wave cutoff
sK<1.28d, the counterpropagation rate of the CRWs is suf-
ficiently strong relative to the shear that their intrinsic phase
speeds are similar. Additionally, the interaction is strong
enough to modify their phase speeds so that they can be
made equal when the CRWs are not in phasese.0d. The
CRW growth rates are only equal, when sineÞ0, if their
amplitudes are equalfQ1=Q2 in s5dg. The phase differencee+

in the locked configuration of the growing normal mode oc-
curs whenė1= ė2 in s6d, thus giving

cose+ =
ksc2

2 − c1
1d

2s
s8d

sindicated by circlesd. In the range 1,K,1.28, counter-
propagation is weaker than advection by the mean flowf1
−1/K.0 in s7bd and s7cdg so that the CRWs lock with a
small phase difference which helps counterpropagations0

FIG. 1. Schematic illustration of the counterpropagating Rossby waves
sCRWsd in the Rayleigh model in the configuration of the most unstable
normal modeswavenumberK<0.8d. Blank arrows indicate the basic state
velocity ū on the edgessy= ±bd. Bold horizontal arrows represent the
CRWs’ propagation direction. The edge positive and negative vorticity
anomalies are indicated by ±q8 and the circulation they induce is illustrated
by the circled arrows and by the cross-stream solid arrows located7p /2 out
of phase of ±q8. The undulating solid lines illustrate the CRWs’ cross-stream
displacement, where the basic state vorticityq̄ at the vicinity of the edges is
given by s1bd. The two CRWs are phase-locked with phase differencee+

<0.65p. The dashed arrows indicate the velocity induced by each CRW on
the opposite edgefattenuated bye−K, s3bdg. Since the phase difference
p /2,e+,p each CRW advects the basic state vorticity on the opposite
edge in a way that makes other CRW grow and hinders its natural
propagation.
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,cose+,1d but enables mutual growthsthe normal mode
growth rate is shown by asterisks in Fig. 2d. At longer wave-
lengthssK,1d the counterpropagation of each CRW is so
strong that its intrinsic phase speed has a greater magnitude
than the basic state flow at its home basese.g.,c2

2 becomes
negatived. Phase locking can only occur when interaction
hinders the propagation of each CRW, although enabling mu-
tual growths−1,cose+,0d. The maximum modal growth
rate occurs atK<0.8 where there is a trade-off between the
exponential increase in interaction strength with wavelength
and the requirement for an increasingly hindering configura-
tion to enable phase lockingsreducing the normal mode
growth rates sine+d.

The illustration here is based on the Rayleigh model.
However, the CRW evolution equationss5d and s6d can de-
scribe the evolution of a disturbance to any steady plane
parallel flow ūsy,zd that could alternatively be described by
the superposition of a growing normal mode and its decaying
complex conjugatesHeifetz et al.6d. However, the expres-
sions for interaction coefficient and CRW phase speeds de-
pend on the basic state of the model and PV inversion rela-
tion, and s7d is specific to the Rayleigh model. It is clear
from the CRW evolution equationss5d ands6d that the CRWs
can gain the largest transient amplitude growth when the
phase difference stays the longest in the vicinity ofe=p /2.
Next, we examine optimal transient growth from the CRW
perspective.

III. GENERALIZED STABILITY THEORY
IN TERMS OF CRWS

A. Formulation

The CRW evolution equationss5d and s6d are general
and describe the discrete spectrum dynamics of any conser-

vative, linearly unstable parallel shear flow. They can be re-
written with the amplitude and phase definitions4d, in the
matrix form as follows:

q̇ = Aq , s9ad

where

q = Sq1

q2
D , s9bd

A = − iSkc1
1 s

− s kc2
2D . s9cd

The general solution tos9d can be written in the equivalent
forms

qstd = eAtqs0d = sPeL tP−1dqs0d = sUSV†dqs0d, s10d

whereeAt is the propagator matrix of the linear dynamics.L
is a diagonal matrix containing the complex eigenvalues ofA
fordered by their real values, Resl1dùResl2dg andP is the
corresponding matrix of eigenvectors. Alternatively,sUSV†d
is the SVD of the propagator matrix and bothU andV are
unitary matricessi.e., UU†= I , where U† is the Hermitian
conjugate ofUd. S is a diagonal matrix which contains real
positive entries, called singular values, ordered by magnitude
along the diagonalss1ùs2ù0d.

Only if the matrixA is HermitiansA†=Ad do the eigen
decomposition and the SVD become identical. If the matrix
A is normal but not Hermitiansi.e., commuting with its Her-
mitian conjugate,AA †=A†Ad then its eigenvectors are or-
thogonal,s j =eResl jdt andU=V.

WhenA is not normal,s1.eResl1dt. As shown by FI96,
s1 is the largest possible growth that autonomous linear sys-
tems of the form ofs9ad can achieve in a time intervalt.

FIG. 2. The CRW parameters which
determine the Rayleigh normal mode
dispersion relation as functions of the
normalized horizontal wavenumberK.
The modal growth ratekci =s sine+,
s11d, normalized by the shearL, is in-
dicated by asterisks. The positive
branch of the modal phase speed,s14d,
normalized by 2bL is shown by the
plus symbols. The cosine of the CRW
phase difference in the growing mode
configuration, cose+, s8d, is indicated
by circles. The interaction coefficient
s, s7ad, normalized byL, and the in-
trinsic upper CRW phase speedc2

2,
s7cd, normalized by 2bL, are indi-
cated, respectively, by the solid and
the dashed lines.
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SinceU andV are unitary, the initial optimal vectorqs0d is
the first column unit vector ofV. The optimal vector at time
t is found by amplifyingqs0d by the factors1 and then
projecting it onto the first column vector ofU. FI96 exam-
ined the optimal growth for the two target time limits of zero
and infinity. The maximum instantaneous growth rate is
equal to the maximum eigenvalue ofsA +A†d /2 and its as-
sociated eigenvector yields the optimal instantaneous struc-
ture. For the target time infinity the optimal perturbation
would eventually be projected onto the gravest modep1.
However its initial perturbation would be in the direction of
the biorthogonal vector of the most unstable moder 1, de-
fined by the first column vector of the matrixR=sP−1d†. At
longer timesqstd→ ur 1ueResl1dtp1, whereur 1u.1 if A is non-
normal.

B. Normal modes in terms of CRWs

The eigenvalues ofA, s9cd, are

l1,2= − ikc̄ ± sÎ1 − f2, s11d

where

c̄ = 1
2sc1

1 + c2
2d, s12ad

f =
ksc2

2 − c1
1d

2s
. s12bd

If f2,1 then pairs of growing and decaying normal modes
exist. Inspection ofs8d reveals that in this regimef =cose+

and thereforel1,2=−ikc̄±s sine+, where e+ is the CRW
phase difference when they are locked into the growing nor-
mal mode configuration. In this case,c̄ can be identified
immediately as the normal mode phase speed ands sine+ is
its growth rate. The eigenvectors ofA are then

P =
1
Î2

S 1 1

eie+ e−ie+
D . s13d

If f2.1, the eigenvalues are purely imaginary indicating that
the normal modes are neutral. Their phase speeds are

c1,2= c̄ 7
s

k
Îf2 − 1, s14d

with the eigenvectors

P =
1

Îa2 + 1
Sa 1

1 a
D , s15d

wherea= f +Îf2−1.
The matrixA, s9cd, is normal only either whenc1

1=c2
2

soccurring atK=1 wherec1
1=0d, or in the limit case ofs

=0 sK→`d. When the CRW phase speeds are equal,f =0
s12bd and therefores11d and s13d give

L normal= Ss 0

0 − s
D , s16ad

Pnormal=
1
Î2

S1 1

i − i
D . s16bd

The CRW interpretation is straightforward. If the two
CRWs have the same intrinsic phase speeds, phase locking is
achieved when interaction cannot modify their propagation
rates. This occurs when they are in quadrature,e+=p /2. The
CRWs cannot gain any additional growth by moving relative
to each other and thus the maximal growth rates is achieved
by the eigenvectors themselves. In the latter case of zero
CRW interactionss=0d, no growth is possible and the two
CRWs become two decoupled neutral edge waves which
propagate with their own intrinsic phase speeds, cf.s14d and
s15d.

C. Optimal growth in the enstrophy norm

Aside from the special cases described above, the matrix
A is non-normal and greater growth can be achieved by sin-
gular vectors than by normal modes. The SVD ofeAt can be
calculated analyticallysusing, for instance, the symbolic
math package of the softwareMATHEMATICA d. A is given by
s9cd andU andV are the eigenvectors ofeAteA†t andeA†teAt,
respectively,

U =
1
Î2

S 1 − ieie0

− e−ie0 − i
D , s17ad

V =
1
Î2

Sie−ie0 1

i − eie0
D . s17bd

The final optimal vector can be expressed in terms of the
phase difference between the CRWs at the initial timee0 or
final time et by noting that the top entry corresponds to
CRW-1 and the second to CRW-2,

u1 =
1
Î2

S 1

− e−ie0
D =

1
Î2

S 1

eiet
D , s18d

which implies the relationshipet=p−e0. Thus, the optimal
evolution is symmetric about the phase differencep /2. The
change in phase difference over the target time intervalt is

D = et − e0 = p − 2e0. s19d

Using this expression, the initial optimal vector can be writ-
ten as

v1 =
1
Î2

Sie−ie0

i
D =

1
Î2

Seis0+D/2d

eiset−D/2d D , s20d

showing that the CRWs shift equal and opposite distances
during optimal evolution.

These results can be understood by considering the evo-
lution of enstrophy which can be expressed usings5d as

1

2

]

]t
sQ1

2 + Q2
2d = 2Q1Q2s sine ø sQ1

2 + Q2
2ds sine s21d

fwheresQ1−Q2d2ù0 was usedg. The maximal instantaneous
growth rate is given by the interaction coefficients and is
obtained when the growth is synchronoussQ1=Q2=Qd and
e=p /2. s is indeed the largest eigenvalue ofsA +A†d /2, and
its associated eigenvector is indeed the first column vector of
s16bd sas predicted by the general theory of FI96d. The
CRWs have equal amplitudes in the initial singular vector
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s20d and s5d shows that the growth must continue synchro-
nously. As indicated bys7ad and Fig. 2, whenK→0, s
→L /2, which is the upper theoretical limit for growth rate in
the Rayleigh modelsDrazin and Reid20d. For finite target
times the integration ofs21d for synchronous growth yields

Qstd = Qs0dexpFsE
t=0

t

sinestddtG . s22d

Optimal perturbations will evolve so that the phase differ-
ence is symmetric in time aboutp /2, maximizing sine, as
shown by the SVD analysiss19d. For synchronous growth,
subtractings6ad and s6bd and substitutings12bd gives

ė = 2sscose − fd. s23d

Substitutings23d into the integrand ofs22d yields

Qstd
Qs0d

= expF−
1

2
E

cose0

−cose0 dscosed
cose − fG , s24d

wheres19d is used to determine the integral boundaries for
the optimal evolution. Integration gives the optimal growth
factor

Qstd
Qs0d

=Î f − cose0

f + cose0
. s25d

1. Optimal growth in the unstable modal regime
„f 2<1…

The matrix of singular values,S in s10d, can be defined
by the eigenvalue matrix ofeAteA†t sor eA†teAtd which is
equal toS2. In the regime wheref2,1,

S = UeL t, U = Su 0

0 u−1D , s26d

whereL is the diagonal eigenvalue matrix ofA andu is the
factor by which the optimal growth exceeds the modal
growth rate.

In this regimes8d shows thatf =cose+. If propagation is
hindered by interaction in the phase-locked configuration,
p /2,e+,p, s23d shows that the CRW phase difference in-
creases with time from any initial phase in the range −e+

,e0,e+. Since the optimal evolution must crossp /2, cf.
s20d, this yieldse0,p /2,et. Therefore, during the optimal
evolution the perturbation structure becomes more tilted
against the shear. By these same considerations, in the help-
ing regime, 0,e+,p /2, the CRW phase difference de-
creases with time for any initial phase in the rangee+,e0

,2p−e+. Thereforeet,p /2,e0, meaning that the pertur-
bation structure untilts while optimally growing. The CRW
optimal evolution is summarized in Fig. 3.

Optimal growth can also be related to modal growth
swhen f2,1d by writing s22d as

Qstd
Qs0d

= expFsE
t=0

t

ssinestd − sine+ddtGes sin e+t

= ues sin e+t, s27d

whereu is the factor by which the optimal growth exceeds

the modal growth. Equations23d can be used to write

u = expF−
1

2
E

cose0

−cose0

cotS e + e+

2
DdeG =

sinS e0 + e+

2
D

cosS e0 − e+

2
D .

s28d

This factor can also be expressed in terms of the CRW dif-
ference at the final time usings19d, u=cosfset

−e+d /2g /sinfset+e+d /2g. Figure 4 showsu in the helping re-
gime s0,e+,p /2d as a function ofset−e+d /p and set

+e+d /2p. The u factor is the greatest, for givenset+e+d,
whereet=e+ sthe phase difference eventually approaches the
phase-locked configurationd. It also increases asset+e+d
→0 because the optimal perturbation spends more time with
a phase difference such that sine.sine+ srecall that in the
helping regime the phase difference for the optimal pertur-
bation decreases with time throughp /2d.

2. Optimal growth in the neutral modal regime „f 2>1…

Equation s15d shows that the two CRWs forming the
neutral normal modes forf2.1 are in phasese=0d but with
different amplitudesssuch thatQ2/Q1=a or 1/ad. However,
the singular vectors ofeAt, given bys17ad ands17bd for any
f, are composed of CRWs with equal amplitudes. Forf .1
the singular value matrix becomes

S = Sg 0

0 g−1D , s29ad

g =Î f − cose0

f + cose0
, s29bd

and therefore the maximum possible growthG, called the
global optimal by FI96, is obtained whene0=p such that

G =Î f + 1

f − 1
. s30ad

Integrating 1/ė with respect toe from e0=p to et=0 fusing
s23dg gives the global optimal target time

FIG. 3. The relative CRW phase anglee in the growing regime of 0,e
,p. e+ corresponds to the CRW phase difference in the growing normal
mode configuration, whileeb=sp−e+d corresponds to its biorthogonal con-
figuration. The maximal instantaneous growth occurs ate=p /2. For finite
target time,s19d indicates that the initial and final optimal phasesse0,etd are
symmetric with respect top /2. Hence for all target times, whene+ is in the
hindering regime,e increases during the optimal evolutionsfilled arrowsd,
andD=set−e0d is positive. For target time infinityse0,etd=seb,e+d.
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T = Sn +
1

2
D p

Îf2 − 1
, n = 0,1,2 . . . . s30bd

In Fig. 5 the examplef =1.1 is chosen to illustrate the
dependence of optimal growth and phase on normalized tar-
get time st. The optimal growth is indicated in the upper
panel by the solid line and the value of the global optimal,
G=4.58, is indicated by the dashed line. The first global
optimal is achieved afterst=p /2sf2−1d−1/2=3.43. The opti-
mal evolution is synchronous and the lower panel indicates
that se0+etd /2= ±p /2. The global optimal is achieved when
se0,etd=sp ,0d.

In the neutral regimesf .1d, if the CRWs are assumed
to have equal amplitudes as is the case for the singular vec-
tors s17d, s23d shows thatė,0 implying that the CRWs are
continually advected past each other by the shear. As dis-
cussed earlier, this occurs because the counterpropagation
rates and interaction strength are too weak to attain a phase-
locked state at high wavenumbers. Therefore, in order to
obtain optimal growth the CRWs should crosse=p /2 so that
e0.et. For short target times,se0,etd are both close top /2,
but as the target time increases, the phase change increases
until the global optimal configurationse0,etd=sp ,0d fFig.
5sbdg. As the target time becomes slightly larger than the first

global optimal, the CRWs must begin with a decaying con-
figuration stilted with the sheard, pass through rapid growth
at p /2 and then end up in a decaying configuration. There-
fore, the optimal growth is smaller than the global optimal.
Eventually, for target timepsf2−1d−1/2, the CRWs start at
e0=−p /2, the amount of decay exactly cancels the amount
of growth and no net growth is obtained at the target time.

3. Wavelength dependence of optimal growth

The effective optimal growth rategstd can be defined as

gstd =
1

t
ln s1std, s31d

wheres1std is the largest singular vector of the propagator
matrix eAt, s9cd. In Fig. 6sad gstd is shown as function ofK
for the target timest=1/L ,3 /L ,5 /L. These growth rates are
compared with the maximal instantaneous growth rates and
the normal mode growth ratefResl1d=kci, s11dg. As ex-
pectedkci ,g,s for all target times between zero and in-
finity, except at wavenumberK=1 where the system is nor-
mal and all growth rates are identical. The shorter the target
time, the greater is the fraction of time spent within the vi-
cinity of phase differencee=p /2 and therefore the effective

FIG. 4. The ratio between the optimal growth and the normal mode growthu as a function ofset−e+d /p andset+e+d /2p, in the regime 0,e+,p /2 where
each CRW must help the counterpropagation of the other to enable phase-locking.se+,etd are the CRW phase difference of the normal mode and the final
phase difference of the optimal perturbation.
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growth rate is larger. Since interaction strengths decreases
exponentially withK, s7ad, g decreases with wavenumber for
all target times. The ratio between the optimal growth and
the normal mode growth is equal either tou, s28d, when f2

,1 or tog, s29bd, when f2.1 sthe modal short-wave cutoff
where f =1 occurs atK<1.28d. In the unstable regime the
maximal value ofu is equal to the magnitude of the bior-
thogonal vector of the most unstable modesmax= ur 1u
=1/sine+. In the stable regime the greatest possible amplifi-
cation is given by the global optimalG, s30ad.

The optimal change in the CRWs’ relative phaseD, s19d,
is plotted in Fig. 6sbd for the three target times.D is positive
for K,1, where the CRWs phase lock in a hindering con-
figuration,p /2,e+,p, so that optimal growth is achieved
when the CRWs start with a small phase difference and it
increases, passing through the most rapid growth atp /2. D is
negative for 1,K,1.28 where the CRWs phase lock in a
helping configuration, 0,e+,p /2. Maximal growth occurs
for target time infinity in the unstable regime and is achieved
by a change in CRW phase difference ofDmax=2e+−p. The
longer the target time interval, the closerD approachesDmax.
In the stable regime, optimal growth is achieved by CRWs
with equal amplitudes but these cannot phase lock and their
phase difference always decreases as they are advected past
each other. Maximal growth can be achieved by a change in
phase difference ofDmax=−p and occurs at the first global
optimal time s30bd for that wavenumber. If the target time
exceeds the first global optimal time for the given wavenum-

ber then the CRW phase difference decreases by more thanp
and cycles of decay and growth are experienced, since the
waves are periodic.

D. Optimal growth in the energy norm

While the normal mode growth rate is independent of
the measured norm, the nonmodal optimal growth generally
changes from one norm to another. The most suitable norms
are “wave activities” that are globally conserved for distur-
bances to a specified basic state and are also quadratic in
disturbance quantities. Pseudomomentum is conserved for
waves on plane parallel shear flows and for Rossby waves is
proportional to the cross-stream air-parcel displacement
squared weighted by the mean cross-stream PV gradient. If
the PV gradients at the two home bases of a CRW pair have
the same magnitudesbut opposite signsd, as in the Rayleigh
model, then the pseudomomentum of each CRW is propor-
tional to its enstrophy. However, the total pseudomomentum
of both waves tends to zero as the CRWs approach the
phase-locked state of the growing normal modesHeld21d.
Therefore, it is natural to use total enstrophy as a positive
definite measure of disturbance amplitude as in Sec. III C.

However, frequently eddy energy is used as a norm al-
though it is not globally conserved for disturbance quantities
alonesconservation is ensured for pseudoenergyd. Here, the
optimal evolution in the energy norm is examined from the
CRW perspective.

FIG. 5. Optimal evolution in the modal stable regime. In this examplef =1.1, s12bd, and the consecutive normalized target timesst=s0,20d. sad The optimal
growth g s29bd is indicated by the solid line. The global optimalG=4.58 s30ad is indicated by the dashed line and is achieved first at the normalized time
T=st=3.43.sbd The initial and final CRW optimal phase differencese0 andet vs target time are indicated, respectively, by the dashed and the solid lines. Note
that the phase difference always decreases with time during optimal evolution.
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The inviscid, incompressible kinetic energy perturbation
can be written as

E = 1
2k¹c, ¹ cl = − 1

2kq,cl, s32d

where kf ,gl=ef*gdV. Substitutings3d into s32d, the energy
norm is seen to be proportional to

E ~ q†Mq ; e†e, s33d

wheree=Tq is the energy generalized coordinate vector,T
=M 1/2, andM is the Hermitian matrix

M =
1

K
S 1 e−K

e−K 1
D . s34d

Thus, in the energy norms9ad becomesė=De, where D
=TAT −1, and its optimal evolution is obtained by the SVD
of the propagator matrixeDt swhile the eigenvalues ofA and
D are the same, their singular values are generally differentd.

In order to understand the different optimal dynamics in
the two norms we writes32d explicitly in terms of s3d, for
synchronized growth, to obtain

E =
Q2

K
s1 + e−K cosed, s35d

and therefore

dE

dt
=

dsQ2d
dt

1

K
s1 + e−K cosed −

de

dt

Q2

K
e−K sine. s36d

The first term on the right-hand sidesRHSd of s36d is the
energy growth attributable to the CRW displacement ampli-
tude growthsenstrophy growthd. The second term is associ-
ated with the Orr22 mechanism, where kinetic energy can
grow simply by changing the tilt of a PV wave without any
change in enstrophy. If the CRW phase difference decreases
sė,0d while these are in the growing configurationssine
.0d then the velocity induced by CRW-1 at the home base
of CRW-2 becomes more in phase with the self-induced ve-
locity of CRW-2. As a result of this constructive superposi-
tion the net magnitude of the velocity vector increases, yield-
ing growth in the kinetic energy.

In fact even without any basic state vorticity gradient,
the Orr mechanism can yield growth. Consider, for instance,
two “passive CRWs” located aty= ±b in an infinite constant
shear layerū=Ly s−`,y,`d. In this case, neither CRW
amplitude growth nor counterpropagation is possible since
both mechanisms involve the advection of basic state vortic-
ity. As a result the two neutral CRWs are simply advected by
the basic state flow at their home bases,ūs±bd. Therefore the
phase difference decreases continually,ė=−KL, which leads

to kinetic energy growth via the Orr mechanism,Ė

FIG. 6. sad The normalized effective optimal growth rategstd, s31d, in the Rayleigh model, as a function of wavenumber, for the normalized target times
1/L , 3 /L , 5 /L, indicated, respectively, by the dashed, dashed-dot, and solid lines. These are compared with the normalized instantaneous growth rates, s7ad,
sbold dotsd, and the normal mode growth ratekci sasterisksd. sbd The optimal change in phase difference between CRWs,D=et−e0, as a function ofK, for the
three target times. The change in phase difference required for maximal growth isDmax=eb−e+=p−2e+ and is achieved as target time tends to infinity.

064107-9 Relating optimal growth Phys. Fluids 17, 064107 ~2005!

Downloaded 07 Jun 2005 to 132.66.16.12. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



=LQ2e−K sine, when 0,e,p. Such “passive CRWs” can
be used to represent the continuous spectrum, as discussed in
the Appendix.

It can be shown that the matrixD is normal for the
wavenumber of fastest growing normal modesK<0.8d,
which implies that the maximal growth rate is modal in the
energy normfalternatively, by substitutings5d and s21d into

s36d it can be shown that] /]KsĖ/Ed=0 is obtained forK
<0.8g. In the enstrophy norm the fastest growing normal
mode does not achieve optimal growth because, although
interaction increases with wavelength, so does the Rossby
wave propagation rate creating the conflicting requirement
that CRWs must hinder each other in order to phase lock.
However, in the energy norm the fastest growing normal
mode is the optimal configuration for growth. This results
from the competition between the two processes attributable
to energy growth on the RHS ofs36d. In Fig. 7 the maximal
instantaneous growth rate in the energy normsdashed lined is
plotted as a function of wavenumber alongside maximal in-
stantaneous enstrophy growth ratesdashed-dot lined and nor-
mal mode growth ratessolid lined. The maximal energy
growth rate is smaller than the maximal enstrophy growth
rate in the regime where CRWs can phase lock in a hindering
configurationsK,1d and generally larger in the helping re-
gime sK.1d. In the hindering regime the optimal evolution
in both norms yieldsė.0, and therefore the Orr mechanism
reduces energy growth. In the helping regime, the optimal
evolution yieldsė,0 and thus both terms at the RHS ofs36d
act to promote energy growth.

The general stability analysis presented here applies not
only to the Rayleigh model but to the discrete spectrum of
any conservative plane parallel shear flow which supports
modal instabilitysHeifetz et al.7d. Nevertheless, even in the
Rayleigh model the analysis does not take into account the

role of the continuous spectrum in the optimal evolution. In
the Appendix we suggest a scheme which generalizes the
CRW analysis to include the complete spectrum solution,
while preserving the principle understanding obtained from
the interaction between pairs of CRWs.

IV. CONCLUDING REMARKS

The fundamental physical mechanisms behind the non-
modal linear dynamics of parallel shear flows have been ex-
plored in terms of counterpropagating Rossby waves
sCRWsd, focusing on the discrete spectrum dynamics. The
emphasis of previous studies discussing CRWssRefs. 1, 4, 6,
9–11, 23, and 24d was on understanding modal instability in
terms of the mutual amplification of phase-locked CRWs.
However, other authors12–19have shown that rapid growth of
small disturbances on shear flows is dominated by the tran-
sient behavior described by nonmodal dynamics. The GST,
established by FI96,19 provides a powerful mathematical tool
to compute the initial excitation, growth, and evolution of the
perturbation which grows fastest in a given norm, over a
given time interval. However, although predictions can be
derived following the mathematical formalism of GST, few
attempts have been made to describe these results in terms of
interaction between components whose properties can be as-
sociated with physical mechanisms. The key advantage of
the CRW perspective is that the physical mechanism respon-
sible for the propagation of a Rossby wave is readily under-
stood. Propagation results solely from advection of the basic
state vorticity by velocities induced by the vorticity anoma-
lies defining the CRW. Interactions between CRWs occur
through the “action at a distance” property of the vorticity
inversion; operator-induced velocities are felt outside the re-
gion where the vorticity anomalies exist. These far-field in-

FIG. 7. The maximal instantaneous
growth rate in the energy norm
sdashed lined vs the maximal instanta-
neous growth rate in the enstrophy
norm sdashed dot lined and the normal
mode growth ratessolid lined, as func-
tions of wavenumberK.
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duced velocities advect the basic state vorticity at the loca-
tion of another CRW, thus affecting its propagation rate and
amplitude.

A key element in the CRW interaction is that their opti-
mal configuration for growth in the enstrophy norm, occurs
when the CRWs have equal amplitudes and are tilted against
the shear with a phase difference ofp /2. In this configura-
tion the CRWs amplify each other but cannot alter their
propagation rates. However, unless the CRWs’ intrinsic
phase speeds are equal, they will not be able to maintain a
phase difference ofp /2 and, as a result, will move relative to
each other, exhibiting nonmodal evolution. The system is
therefore normal only in the special case of equal CRW in-
trinsic phase speeds, whereas for all other wavelengths the
optimal evolution tends to maximize the duration at the vi-
cinity of p /2.

If each CRW must hinder the other’s counterpropagation
rate in order that their phase speeds become equal and phase
locking can occur, optimal growth involves an increasing
phase difference passing throughp /2 and consequently the
growing perturbation evolves to be more tilted against the
shear. If, on the other hand, phase locking requires mutual
help in counterpropagation, the phase difference decreases
during the optimal evolution and the growing structure be-
comes less tilted against the shear. For short target times the
CRW phase difference does not stay far fromp /2. For large
target times the initial optimal phase tends to that of the
biorthogonal vector of the unstable mode,p−e+, wheree+ is
the phase difference in the normal mode configuration. The
efficiency of the interaction is determined not only by the
CRW phase difference but also by the strength of the CRW
interaction coefficient, which is a function of wavelength.

CRWs are vorticity waves and thus describe enstrophy
growth in a natural way. However, a simple transformation
yields the nonnormal growth in the energy norm from the
CRW perspective. Energy growth not only depends on CRW
amplification sthrough increasing air parcel displacements
and thus enstrophy growthd, but also on a change in their
phase difference. The latter results from the Orr22 mechanism
of kinetic energy growth involving the change in tilt of a
vorticity disturbance, without a change in enstrophy. When
the CRWs are in a growing configuration and their phase
difference decreases, the velocities they induce on each other
become more in phase. Consequently, the magnitude of the
total velocity vector, and thus the kinetic energy, increase.
For wavelengths where CRWs must help each other to coun-
terpropagate in order to maintain modal phase locking, the
nonmodal evolution is such that the CRW phase difference
decreases with time while crossingp /2 sCRWs become
more in phased. Therefore, energy grows due to both CRW
amplitude amplification and the Orr mechanism. In cases
where CRWs increase their phase difference during their op-
timal evolution, the growth in energy is usually smaller than
the growth in enstrophy, since the Orr mechanism acts to
decrease the velocity vector. In the Rayleigh3 model of a
single shear layer, the combination of the two mechanisms
implies that the maximal energy growth is achieved by the
most unstable normal mode.

The analysis presented here can be applied to the dis-

crete spectrum optimal dynamics of any unstable conserva-
tive plane parallel shear flow. The Rayleigh model was used
for illustration because it indicates how to generalize the
CRW description in order to include continuous spectrum
dynamics. In the Rayleigh model the basic state vorticity
gradient is concentrated at the edges of the shear zone in two
d functions and, therefore, Rossby wave propagation is pos-
sible only at these locations. In a general shear profile we can
use the Green function technique and represent the vorticity
disturbance as composed of infinite number of vorticityd
functions described as “CRW kernels.” These CRW kernels
induce streamfunction anomalies of the same form as those
of the Rayleigh edge waves, and thus the general linear dy-
namics can be regarded in terms of the interaction between
infinite number of CRW kernels. Each CRW kernel affects
the counterpropagation speeds and growth of all other CRWs
and in turn is affected by them. The interaction depends on
the phase differences and the interaction coefficients between
the kernels.

If the flow is discretized in the cross-stream direction
into a finite number of strips, the CRW kernel equations can
be written into a matrix form which is the direct generaliza-
tion of the two CRW interaction matrix of the Rayleigh
model, and the SVD analysis of the propagator matrix yields
the optimal evolution of the complete spectrum. Although
the general optimal evolution might be complex, its interpre-
tation remains relatively simple since the nature of interac-
tion between any CRW pair is transparent.
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APPENDIX: CRW KERNEL DYNAMICS
FOR A GENERAL SHEAR FLOW

Consider a general inviscid, incompressible, shear pro-
file ūsyd with a mean vorticity profileq̄syd. Then, writing all
perturbation variables in the Fourier formhsx,y,td
=e0

`ĥsy,t ,kdeikxdk, the vorticity perturbation can be written
as

q̂sy,t,kd =E
y8=−`

`

fq̂sy8,t,kddsy8 − ydgdy8

; E
y8=−`

`

q̃sy8,t,kddy8. sA1d

The “vorticity density kernel”q̃sy8 ,t ,kd induces a stream-

function densityc̃sy,y8 ,t ,kd which must satisfyq̃=−k2c̃

+c̃yy. Therefore,

c̃sy,y8,t,kd = q̂sy,t,kdGsy,y8d, sA2d

with the Green function
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Gsy,y8d = −
e−kuy−y8u

2k
sA3ad

for unbounded flows and

Gsy,y8d =
− 1

k sinhs2kbd

3Hsinhfksb + y8dgsinhfksb − ydg for y8 ø y , b

sinhfksb − y8dgsinhfksb + ydg for − b , y ø y8
J

sA3bd

for bounded flows aty= ±b fwherev=cxsy±bd=0g. Hence,
for open flows, the inversion ofsA1d can be written as

ĉsy,t,kd =E
y8=−`

`

q̂sy8,t,kdGsy,y8ddy8. sA4d

SubstitutingsA1d andsA4d into the linearized vorticity equa-
tion s2d,

q̇̂ = − ikfūsydq̂ + q̄ysydĉg, sA5d

and writing the vorticity in terms of amplitude and phase,
q̂sy,td=Qsy,tdeiesy,td, we obtain for the real and the imagi-
nary parts insA5d,

Q̇syd = − kq̄ysydE
y8=−`

`

Qsy8dGsy,y8dsinesy,y8ddy8,

sA6ad

ėsyd = − kHūsyd + q̄ysyd

3E
y8=−`

`

fQsy8d/QsydgGsy,y8dcosesy,y8ddy8J . sA6bd

sA6d indicates that each CRW kernel changes its ampli-
tude and phase due to cross-stream advection of the mean
vorticity in its own layer, where the cross-stream velocity is
attributable to all other kernels and attenuated according to
the Green functionGsy,y8d and the relative phaseesy,y8d
=esyd−esy8d. Hence, the mechanism of amplitude growth
and counterpropagation is the same as for a CRW pair of the
discrete spectrum, except that here each CRW kernel affects,
and is being affected by, an infinite number of other kernels.

In the case of the Rayleigh model, whereq̄y=Lfdsy
−bd−dsy+bdg, we can write

q̂sy,t,kd = fQ1stdeie1stddsy + bd + Q2stdeie2stddsy − bdg

+ Qsy,tdeiesy,td, sA7d

where the two terms at the square brackets compose the dis-
crete spectrum solution,s3ad, and the latter term on the RHS
represents the continuous spectrum solution atyÞ ±b. Sub-
stituting sA7d and sA3ad into sA6d, we obtain

Q̇1

Q1
= −

L

2FEy8=−`

` Qsy8d
Q1

e−kuy8+bu sinfe1 − esy8dgdy8

+
Q2

Q1
e−K sinfe1 − e2gG , sA8ad

Q̇2

Q2
=

L

2FEy8=−`

` Qsy8d
Q2

e−kuy8−bu sinfe2 − esy8dgdy8

+
Q1

Q2
e−K sinfe2 − e1gG , sA8bd

ė1 = − kc1
1 −

L

2FEy8=−`

` Qsy8d
Q1

e−kuy8+bu cosfe1 − esy8dgdy8

+
Q2

Q1
e−K cosfe1 − e2gG , sA9ad

ė2 = − kc2
2 +

L

2FEy8=−`

` Qsy8d
Q2

e−kuy8−bu cosfe2 − esy8dgdy8

+
Q1

Q2
e−K cosfe2 − e1gG , sA9bd

together withQ̇syd=0 and ėsyd=−kūsyd for yÞ ±b. In the
case of zero continuous spectrumsA8d andsA9d becomes5d
and s6d. The continuous spectrum PV kernels are passive in
the sense that, in the absence of local basic state vorticity
gradient, they cannot grow or counterpropagate and therefore
are simply advected by the basic state velocity. Nevertheless,
as indicated bysA8d and sA9d, the velocity they induce af-
fects the discrete spectrum growth and phasesBishop and
Heifetz24 showed how such interaction leads to a linear ab-
solute baroclinic instability of the discrete spectrum in the
semi-infinite Eady25 model, whose barotropic analog is the
semi-infinite Rayleigh modeld. Furthermore, as discussed in
Sec. III D, even in the absence of a basic state vorticity gra-
dient, the continuous spectrum can grow in the energy norm,
without a change in enstrophy, via the Orr22 mechanism.

Discretizing sA6d into N strips in they direction and
weighting the mean vorticity gradient by the strip width
Dys jd=ys j +1d−ys jd, we can then writesA6d in the matrix
form

q̇̂ = Aq̂ , sA10ad

where

A = − ikfU + QyGg sA10bd

and
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q̂ =1
q̂1

q̂2

.

.

.

q̂N−1

q̂N

2 , sA10cd

U =1
U1 0 . . . 0

0 U2 . . . 0

. . .

. . .

. . .

UN−1

0 . . . UN

2 , sA10dd

Qy =1
q̄y1 0 . . . 0

0 q̄y2 . . . 0

. . .

. . .

. . .

q̄yN−1

0 . . . q̄yN

2 , sA10ed

G =1
Gs1,1d Gs1,2d . . . Gs1,N − 1d Gs1,Nd
Gs2,1d Gs2,2d . . . Gs2,N − 1d Gs2,Nd

. . .

. . .

. . .

GsN − 1,1d GsN − 1,2d . . . GsN − 1,N − 1d GsN − 1,Nd
GsN,1d GsN,2d . . . GsN,N − 1d GsN,Nd

2 , sA10fd

whereG is Hermitianfe.g.,Gsi , jd=Gs j , id=−e−kuysid−ys jdu /2k
in open flowg. GST analysis can be applied in the enstrophy
norm by exploring the SVD of the propagator matrixeAt, and
in the energy norm by calculating the SVD of the trans-
formed propagation matrixeDt, as described in Sec. III D.
Discretization of sA4d immediately implies that the 232
matrix M , s34d, generalizes to −G and therefore in energy

coordinates the evolution equation becomesė̂=Dê, where
D=G1/2AG−1/2.
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