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SUMMARY 
Wave development, using Rayleigh’s 1880 model of barotropic, inviscid and incompressible flow, with a 

mean zonal wind which is linearly sheared between two edges, is described in terms of the interaction between 
two counter-propagating Rossby waves (CRWs). Although the solutions described by this approach could also 
be described by a sum of the normal modes originally obtained by Rayleigh, we offer a CRW description of 
Rayleigh’s model because it provides a useful pedagogical framework for illustrating, in a precise and quantifiable 
manner, the interacting Rossby wave view of instability. A CRW interpretation of a modified version of the 
Rayleigh model, consisting of a jet-like flow featuring two strips of vorticity with opposite signs, is also given. 
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1 .  INTRODUCTION 

Bretherton (1966) showed that wave development in flows that feature two distinct 
potential-vorticity (PV) gradients can be interpreted in terms of the interaction of 
two distinct Rossby waves which propagate on the two distinct PV gradients. This 
explanation provided an alternative explanation of Charney and Stem’s (1962) finding 
that the two PV gradients had to be of opposite sign in order for normal-mode (NM) 
instability to occur. Bretherton argued that the perturbation PV field of a NM would 
only be able to resist the deforming effects of a shear flowt if there were basic state 
PV gradients that allowed Rossby wave propagation to offset such deforming effects. In 
regions where the NM’s phase speed is positive relative to the basic state flow, the basic 
state PV gradient had to provide Rossby wave propagation with a similarly positive 
phase speed, and vice versa. Since the direction of Rossby wave propagation is given 
by the sign of the basic state PV gradient, this means that the basic state PV gradient in 
some part of the region where the wave propagation, relative to the flow, is positive had 
to be of a different sign to the PV gradient in some part of the region where the wave 
propagation, relative to the flow, is negative. 

Bretherton described this process of deformation resistance in terms of the interac- 
tion of two Rossby waves which propagated in opposing directions on oppositely signed 
PV gradients. In the terminology of Hoskins et al. 1985 (henceforth HMR) such Rossby 
waves are counter-propagating (CRWs). Bretherton and HMR considered the distur- 
bance wind field attributable to the PV pattern in each of the waves, where ‘attributable 
to’ means attributable in the sense of what HMR called ‘PV inversion’. If this wind field 
overlaps both regions of PV gradients, then each wave can affect the other’s phase speed 
and/or make the other grow or decay. This effect depends on the phase relation between 
the two waves. The phase relation required for the two waves to resist the deforming 
affects of the shear was found to be dependent on the intrinsic propagation speeds of 
the Rossby waves. Since the intrinsic propagation speed increased as the wavelength 

* Corresponding author, present affiliation: Department of Earth and Planetary Sciences, Harvard University, 
Cambridge, Massachusetts 02138, USA. e-rnail: eyal@deas.harvard.edu 

Note that since, by definition, the time dependence of normal modes is separable from their spatial dependence 
(cf. Farrell 1984), NMs always resist the deforming effects of shear flows. 
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increased, Bretherton was able to infer how the phase tilts of shear-resistant structures 
would change with wavelength. Since these phase tilts determined whether a disturbance 
would grow or decay, he was also able to estimate how the growth rate of shear-resistant 
waves would vary with wavelength. In particular, he was able to explain why Eady’s 
(1 949) model of baroclinic instability did not support amplifying strain-resistant short 
waves. 

In the past decade, quantitative forms of the qualitative ideas of Bretherton and 
HMR have been used to intepret a range of instabilities. Bishop (1993a,b) showed 
that the qualitative ideas of Bretherton and HMR could be expressed quantitatively, 
and extended to interpret the non-modal growth of baroclinic waves that were unable 
to resist the deforming effects of a confluent-diffluent deformation field, but were able 
to partially resist the deforming effects of vertical shear. Bishop and Thorpe (1994) 
built on the work of Dritschel et al. (1991) to show how the CRW perspective could 
be used to interpret non-modal barotropic wave growth on fronts undergoing moist 
deformation frontogenesis. Barcilon and Bishop (1998) also used the framework to 
interpret the effect of barotropic shear deformation on baroclinic waves. Recently, 
Bishop and Heifetz (1999) used CRWs to describe the absolute instability that arises 
from the interaction between the discrete and the continuous spectrum in the semi- 
infinite Eady basic state. Heifetz (1999) discusses work in progress to develop a general 
algorithm to construct CRWs from NMs, in a baroclinic and/or barotropic basic state, 
and applies it to the Charney (1947) problem and to a full primitive-equation model with 
a realistic jet. To illustrate the baroclinic CRW concept in a simple context, Davies and 
Bishop (1994) derived the dynamical equations for the CRWs in the Eady model. 

An even simpler framework is the fundamental two-dimensional (2-D) barotropic 
problem of linear shear instability-the Rayleigh (1 880) problem. Extensive efforts 
have been put into finding the eigenvalue solutions of a whole set of problems which 
are related to the Rayleigh problem (comprising different mean wind profiles and/or 
different boundary conditions), cf. the review paper by Drazin and Howard (1966). Also, 
Rayleigh’s initial-value problem has been solved by Eliassen et al. (1953) and Case 
(1960a,b) using the Fourier-Laplace transforms analysis or, alternatively, by looking 
on the spatial modes evolution, Gaster (1962) and Watson (1962). More recent work 
on the optimal excitation of perturbations and their transient growth in a barotropic 
shear flow has been carried out by Farrell, e.g. Farrell (1988). The nonlinear aspects 
of the perturbation growth in the Rayleigh problem have been examined by Dritschel 
(1989). Here (in section 2), we use the Rayleigh problem only in order to demonstrate 
the CRW’s dynamics, and its relationship to NMs, in their clearest and simplest form. 

By considering the instability of a barotropic jet flow defined by two contiguous 
strips of vorticity with opposite signs, we illustrate how the CRW concept can be 
extended to flows where there are more than two important PV gradients. In section 3, 
we deduce the NMs of this jet flow directly from the interaction between its three CRWs. 
Concluding remarks appear in section 4. 

2. INTERPRETATIONS OF THE RAYLEIGH PROBLEM 

(a) The NMperspective 
Consider a 2-D inviscid and incompressible flow with a mean zonal wind a, which 

is linearly sheared between the two edges y = {-b, b}, see Fig. l(a). This flow forms a 
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Figure I .  (a) The basic state of the classical Rayleigh model of shear instability, Eq. (1). Arrows indicate the 
zonal mean wind, u, that forms a strip with vorticity 7 = -A, where A is the shear. (b) The dispersion relation of 
the normal modes (NMs) in the Rayleigh model. The solid line indicates the growth rate ( K C i )  normalized by A; 
the dashed line indicates the real phase speed (C,) normalized by 2Ab, where 26 is the width of the shear zone. 
The solid grey line (discussed in section 2(b)) indicates cos A€,,,,, where A€,,,,, is the westward phase shift of the 

northern counter-propagating Rossby wave (CRW) relative to the southern CRW. 

strip of vorticity 4, equal to the negative value of the shear A, i.e. 
0 for y 2 b 

{ 0 fory < -b 
(1) - [  -Ab fo ry<-b  

U =  Ay f o r - b < y < b  and 4=  -A f o r - b < y < b  

where y is the meridional direction in conventional Cartesian (x, y) coordinates, associ- 
ated with velocity components (u,  v). 

The NMs solution for a small disturbance, can be obtained from linearizing the 
vorticity equation dqldt = 0 (where t is time, q is the magnitude of the vorticity 
vector, - $, $ = 2 + v V, v = (u,  v) = (u + u', v ' ) ,  and a prime indicates a 

Ab fory 2 b 

av 
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disturbance), which manifests the Lagrangian conservation of the vorticity by an air 
parcel. The linearization yields, 

where the right-hand side (r.h.s.) of (2) is zero in the interior { -b < y < b}, and singular 
on the edges {y = fb}; i.e. -3 = uyy = [u,]?S(y 7 b), where [u,(y)]? indicates 
the jump of the field a, across the edges so that [u,(y)]+ = [u,(y+)] - [u,(y-)], 
where [u,(y+)] = lim,cf! U,(y) and [u,(y-)] = lim,tkb U,(y). Refemng only to 
the discrete spectrum solubon, then q‘ = 0 in the interior. Integrating (1) with respect to 
y across the edges, 

- - 

Taking E to zero and assuming that 
edges can be written then as, 

is finite everywhere, the vorticity equation on the 

Thus, defining the incompressible stream function + such that (u ,  u )  = (-+,, + x )  and 
q’ Rayleigh looked for NM solutions in the form of a zonal wave +nm = 
Re[@(y) ei(kx-ot)], with a wave number k, frequency w and phase speed c = w / k .  He 
wrote the meridional structure $(y), as 

A sinh( K) e-k(y-b) 

B sinh( K) ek(y+b) 

for y 2 b 

for y < -b. 
A sinhk(y + b )  + B sinhk(b - y) for -b < y < b ( 5 )  

where K = 2kb is the nondimensional wave number and A, B are two constant coeffi- 
cients. Substituting the NMs in the boundary conditions, (4), and seeking a non-trivial 
solution with A, B # 0, he found the dispersion relations, Fig. l(b), 

4 

1 -2K 112 C=f-{(K - l )*-e  } , 
2K 

where C = c / A u  = c/2Ab is the nondimensional phase speed. 
Thus, for wave numbers smaller than the critical value, Kc = 1 + eWKC % 1.28, 

the phase speeds are purely imaginary (i.e. the modes are stationary), and the NMs’ 
growth rate, A KCi ,  is maximum at K m ,  0.8, (corresponding to the wavelength 
Am, = 2n/ K m ,  M eight times the width of the vorticity strip) and is equal to about 20% 
of the shear A,  cf. Fig. l(b). For wave numbers larger than K c ,  the modes are neutral 
with either positive or negative real phase speeds. The amplifying and the decaying 
modes’ amplitudes are meridionally symmetric, IAl= IBI, but within the strip their 
stream function phase lines tilt to the west with increasing latitude for the growing 
modes, and tilt to the east for the decaying modes. In contrast, the neutral modes’ 
stream function phase lines do not tilt with increasing latitude and their amplitudes are 
meridionally asymmetric; for positive real phase speed, I A I is larger than 1 B I and vice 
versa for negative phase speed. 
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Rayleigh’s standard NM analysis reveals amplifying structures which are capable of 
resisting the deforming affects of the shear flow. From this analysis, one can correctly 
predict that amplifying structures with a wavelength about 8 times the width of the 
shear zone will eventually emerge from any random small amplitude disturbance to 
the shear flow that has a non-zero projection onto the most rapidly amplifying NM. 
However, if we were to search this analysis for a ‘reason’ why and how waves grow 
on this shear flow, we find that ‘the waves must grow because a complex phase speed 
is required in order that ( 5 )  and (4) be simultaneously satisfied’. The authors find this 
explanation rather unsatisfying. Its extreme specificity means that it gives little insight 
into the stability of shear flows slightly different from Rayleigh’s shear flow. What 
would the stability of the shear flow be if the PV gradients at the edges of the vorticity 
strip were smooth, or if the vorticity in the region surrounding the strip were non-zero? 
Furthermore, the evolution of linear sums of conjugate NMs can only be inferred by 
evaluating their sum. One does not obtain an overview of how different initial wave 
structures will evolve in time. A more satisfying explanation would be one that gave such 
an overview, and also allowed one to make quick but qualitatively correct predictions 
about how the stability of the system would change as the basic state flow were changed 
without having to obtain the precise NM solution for each variation of the shear flow. 

In our view, the missing ingredient in the normal mode ‘explanation’ of shear- 
flow instability is a pictorial story of how key features of the shear flow interact to 
produce wave growth. The power of explanations that translate stories or paradigms into 
mathematics is illustrated by Holton’s (1992, p. 91), simple explanation of sea breeze 
development. The mathematics allows us to make quantitative predictions for a specific 
situation, while the pictorial story of air being heated over land more than air over the 
sea allows us to make qualitatively correct predictions about how sea breeze strength 
might vary if, for example, the albedo of the land were changed. 

From Bretherton’s (1966) perspective the key protagonists in stories of wave devel- 
opment on the Rayleigh shear flow are two Rossby edge waves, one of which propagates 
westward along the northern edge of the shear zone on a northward pointing PV gradi- 
ent, while the other propagates eastward along the southern edge of the shear zone on a 
southward pointing PV gradient. The mathematical description of these entities is given 
in the next subsection. 

(b) The interacting Rossby wave perspective 
The Rossby edge waves are the wave disturbances to the vorticity field at the edges, 

together with the stream function field attributable to these disturbances. The stream 
function field attributable to the vorticity disturbance at the northern edges is obtained 
by solving the Poisson equation 

v2+’ = q’, (7) 

subject to V+’ tending to zero as (yI tends to infinity, where q’ is the vorticity 
disturbance on the northern boundary. The solution which satisfies (7) at y = b, with 
a zero q’ elsewhere, can be written as: 

(8) 

This is the inversion process relevant here. The singularity of the vorticity on b is 
due to the discontinuity of the perturbation zonal wind u’ across the edge, so that 
q’ = -2k eikXG(y - b) .  Thus, in this idealized model, the Rossby wave’s vorticity field 
is proportional to a Dirac delta function while the wind field it induces fills all space. As 

+ I  = -kly-b( ikx e e .  
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such it can interact with disturbances on the southern edge. If we ignore this interaction 
by, for example, removing the southern edge to minus infinity, then by substituting into 
(2) or (4) we find that the northern wave would be advected eastwards by the westerlies 
while propagating westwards relative to this flow, cf. Fig. 2(a). The expression for the 
phase speed which results from these opposing effects is given by: 

where the subscript n indicates the northern wave. Note that the westward Rossby propa- 
gation* is inversely proportional to the non-dimensional wave number K. When K = 1, 
the westward propagation exactly balances the eastward advection by the mean flow. 
For longer wavelengths, K -= 1, westward propagation dominates eastward advection. 

Similarly, the stream function field attributable to wave vorticity disturbances at the 
southern edge is given by: 

(10) 
In the absence of interactions with the northern edge, the wave would propagate 
eastwards while being advected westwards by the mean flow. The expression for the 
phase speed which results from these opposing effects is given by: 

+I = e-kly+bl eikx 

cs = V ( 4 )  (1 - +) , 
where the subscript s indicates the southern wave, cf. Fig. 2(b). Hence, the southern 
CRW is a mirror image of the northern CRW with an eastward propagation speed. Both 
waves propagate to the left of the local mean gradient in vorticity via the Rossby wave 
propagation process discussed in many textbooks, e.g. Gill (1982). The difference be- 
tween the propagation rate of the northern edge wave and the southern edge wave is 
known as the counter-propagation rate. Note also that defining the meridional displace- 
ment r , ~  so that u = $, (2) can be written as: 

Equation (12) indicates that for perturbations, created from pure vorticity advection, 
the vorticity and the meridional displacement are in phase on the southern edge and 180 
degrees out of phase on the northern edge; i.e. displacements away from the centre of the 
negative-vorticity strip always correspond to negative-vorticity anomalies, cf. Figs. 2(a) 
and (b). 

For strips of finite width and finite wave numbers the two CRWs interact with each 
other through the meridional wind they induce on each other's edges. To mathematically 
describe this interaction we formulate our solution procedure in terms of a superposition 
of the two edge waves: 

(13) 
where S and N are the time dependent amplitudes of the southern and northern CRWs 
respectively, and cs, En are their time dependent phases. The two degrees of freedom 

$1  = {s(t> e-kl~+bl ek(r) + ~ ( t )  e-kly-bl eic"(t)} &, 

* In order to prevent confusion: by 'Rossby propagation' we mean the propagation which is relative to the mean 
flow on the edge; and by 'phase speed' we mean the CRW's propagation speed relative to the stationary frame of 
reference. 
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to initiate the system are the initial amplitude ratio ($),=,, and the phase difference 
(A6 = en - E , ) ~ = O .  Using (13) in (4) gives the equations governing the CRWs which 
are: 

-- as - - - [ e-K (:) } sin(he), 
s at 2 

N at 2 
1 a N  A 
-- = - [ e-K ( 5 ) )  sin(Ac), 

I a C s  - 
c s = - - - = U ( - b )  k at 

This equation set is homomorphic to Eqs. (7a) to (7d) of Davies and Bishop (1994) for 
the temperature edge waves of the Eady model (from the CRW perspective, the Eady 
model is the exact analogue of the barotropic Rayleigh problem). The equations give 
precise descriptions of how the two Rossby waves interact with each other. To see this, 
consider the following. 

Since the vorticity advection due to the flow attributable to the vorticity wave on the 
southern edge is a quarter of a wavelength out of phase with its vorticity, the southern 
wave cannot grow by itself; it can only make itself propagate to the left of the local mean 
vorticity gradient. Thus, it is only the wind field attributable to the northern vorticity 
wave that can affect the amplitude of the opposing southern vorticity wave. 

The exact effect of the northern vorticity wave on the opposing southern vorticity 
wave depends on the phase difference between the two waves. If the northern wave 
is less than half a wavelength west of the southern wave, (i.e. 0 < AE < IC), the wind 
attributable to the northern vorticity wave will advect positive vorticity and negative 
vorticity into the respective crests and troughs of the southern vorticity wave. Such 
increases and decreases in vorticity at the respective crests and troughs of a wave equate 
to wave growth. Conversely, if 0 > A6 > -IC the waves attenuate. This description is in 
accord with (14a), which states that the growth of the southern vorticity wave is directly 
proportional to the product of the amplitude of the opposing northern vorticity wave 
(which has its attributable meridional wind attenuated on the southern edge by e-K) 
with the sine of the westward phase displacement of the northern wave. The growth is 
proportional to the averaged mean vorticity on the two sides of the edge. Similarly, the 
southern wave affects the northern wave’s growth in accordance with (14b). 

If the northern wave is less than a quarter of a wavelength out of phase with 
the southern wave (lael < I C / ~ ) ,  the wind attributable to the northern vorticity wave 
reinforces the wind field attributable to the opposing southern vorticity wave. This 
reinforcement increases the rate at which the crests and troughs propagate to the left 
of the mean vorticity gradient. This increase in counter-propagation tends to increase 
the westward displacement of the northern wave. This effect is opposed by the basic 
state wind which would, if acting in isolation, increase the eastward displacement of the 
northern wave. 

On the other hand, if the northern wave is between a quarter and a half of a 
wavelength out of phase with the southern wave (IC > I A€ I > I C / ~ ) ,  the wind attributable 
to the northern vorticity wave destructively interferes with the wind field attributable to 
the opposing southern vorticity wave. Such destructive interference decreases the rate 
at which the crests and troughs propagate to the left of the mean vorticity gradient. This 
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decrease in counter-propagation tends to decrease the westward speed of the northern 
wave. 

These conceptual descriptions of how the two waves affect each other's propagation 
rates are consistent with (14c,d). These equations show that the propagation rates of the 
southern and northern waves to the left of the local vorticity gradient are enhanced when 
the cosine of Ar  is positive. 

A convenient way of visualizing the complete range of structural developments 
described by the set (14) is to utilize a phase diagram of the type introduced by Bishop 
(1993a). First, note that the essential structure of the wave is uniquely defined by the 
inverse tangent of the amplitude ratio N / S  and the phase displacement AE. (Note 
that the inverse tangent of the amplitude ratio is used, because the amplitude ratio is 
unbounded and this is inconvenient for plotting purposes. In contrast, the inverse tangent 
is bounded between 0 and n/2.) Second, note that equations for the rate of change of 
these two parameters can be derived directly from (14), namely: 

f = + e  - K  cos(2y) sin(Ar), 

e-K 
( l - K ) + -  

sin(2y) 
where y = arctan(N/S). Each y and AE pair of values defines a unique structure, while 
(15a) and (15b) describe how this structure varies with time. Thus by plotting (AE,  f )  
as vectors on the (Ar, y )  plane one obtains an overview of how the (Ar, y )  value of a 
wave of wave number K evolves in time. 

Figures 3(a), (b), (c), (d) and (e) show the (AE, y )  phase diagrams for K = 1.5, 
1.278, 1.25, 1.0, and 0.797, respectively. In interpreting these diagrams, note that 
at y = 0 the northern vorticity wave has zero amplitude, and that at y = n/2 the 
southern vorticity wave has zero amplitude. At y = n /4  % 0.785 the two waves have 
equal amplitudes. Also note that according to (14a,b), the structures amplify whenever 
TT > Ar > 0 and attenuate when -n < AE < 0. Thus, points on the r.h.s. of the diagram 
correspond to growing waves, and on the 1.h.s. to the decaying waves. Since it is the 
northern wave that makes the southern wave grow, the growth rate of the southern wave 
is proportional to the amplitude of the northern wave, cf. 14(b), and vice versa for the 
northern wave, cf. 14(a). Consequently, when n > Ar  > 0, the smaller of the northern 
and southern waves grows faster. Thus, on the r.h.s. of all of the phase diagrams shown in 
Fig. 3, the arrows point toward the equal amplitude y value of n/4. By similar reasoning 
one can show that when -n < Ar < 0, the smaller of the two Rossby waves decays 
fastest and, consequently, on the 1.h.s. of all of the phase diagrams shown in Fig. 3, the 
arrows point away from the equal amplitude y value of n/4. 

At K = 1.5, we see that the Ar  values of structures which have y values near 
n/4 are continuously decreasing. This is because at the relatively small wavelength 
corresponding to K = 1.5, the tendency of the shear flow to decrease Ar cannot be 
offset by counter-propagation. At this wavelength, the only way the two edge waves 
counter-propagation rate can offset the advection by the mean flow is if there is a 
significant difference between the amplitudes of the upper and lower waves, cf. (15b). 
This is evidenced by the two spiral nodes at (Ar ,  y )  = (0, 0.23); (0,1.34). Since the 
structure of NMs does not change with time, these nodes correspond to the two neutral 
NMs (indicated by nl and n2 in the diagram). Note also that at AE = 0 and y < 
)&"&a1 mode 1 ; y > ynemral mode 2 the COUnter-prOpagatiOn exceeds mean flow advection 
and AE increases with time. Furthermore, when the amplitude of one of the waves is 
vanishingly small, counter-propagation exceeds advection for all phase shifts in which 



2844 E. HEIFETZ, C. H. BISHOP and P. ALPERT 

K = 1.5 

t , . . . . ,  . . . . . . . . . .  . . . . . . . I .  . . . . . . .  1 
- 4  - 3  - 2  -1 0 1 2 3 

A€ 

1, . . . . . . . . . . . . . . .  . . . ,  . . . . . .  
- 4  - 3  - a  -1 0 1 2 3 

A€ 

Figure 3. Phase diagrams for the evolution of the structures of counter-propagating Rossby waves (CRWs) for 
different wave numbers K. The abscissa is A€, the phase difference between the northern and the southern CRWs; 
the ordinate is y ,  the inverse tangent of the amplitude ratio of the northern and the southern CRWs. The arrows 
indicate vectors where their x and y components are the time derivatives of A6 and y respectively, as determined 
by Eqs. 9(a,b). (a) K = 1.5; the two neutral N M s  are indicated by 'nl' and 'n2'. (b) K = 1.278; the single NM 
of the short-wave cut-off is indicated by 's'. (c) K = 1.25; (d) K = 1.0; and (e) K =0.797. The growing and 

decaying NMs are indicated by 'g' and 'd' respectively in (c), (d) and (e). 
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K = 1.25 

K = 1.0 

Figure 3. Continued. 
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K = 0.797 

* 

*-- 

c 
A-- 

1 .  . . . . ,  . . I  . , .  . . . .  . .  , . . . . I .  . ,  I 
- 4  - 3  - 2  -1 0 1 2 3 

A€ 

Figure 3. Continued. 

IArI < n/2, while advection exceeds counter-propagation whenever 1 Ar 1 > n/2. Note 
that (15b) shows that this is true for all wavelengths. 

Despite the fact that the structures with y values near n /4  will never attain a time 
invariant structure, growth occurs whenever Ar > 0. It is this sort of growth that was 
discussed by Rotunno and Fantini (1989). 

At the critical wavelength K ,  = 1.278, the single NM at (AE, y )  = (0, n/4), is a 
saddle node (indicated by ‘s’). For a smaller wave number K = 1.25, we see that the Ar 
values of structures can increase for all amplitude ratios provided that the absolute value 
of A6 is not greater than ACnomal = 0.5 1. At this wavelength, counter-propagation 
can dominate advection at all amplitude ratios provided that the northern and southern 
waves sufficiently reinforce each other’s wind fields. The structural invariance of the 
stable and unstable nodes on this phase diagram means that they respectively correspond 
to the growing and decaying NMs (indicated by ‘g’ and ‘d’). In these NM structures, 
counter-propagation is exactly balanced by mean flow advection. Note that, apart from 
the decaying NM, all modes gradually attain the stable structure of the amplifying NM. 

For K = 1, the structure is similar to the K = 1.25 figure, except that here the NMs 
have a phase shift of a quarter of a wavelength, cf. Fig. 4. As should be clear from our 
earlier discussion of isolated edge waves, at this wavelength the edge waves do not need 
assistance to offset advection by the mean flow. 

Interestingly, although the K = 1 NM has a quarter of a wavelength phase shift, 
which according to (14a) and (14b) is an optimal phase shift for growth, the K = 1 is 
not the most rapidly growing normal mode. Why? 

It is the wind field attributable to the vorticity of the opposed CRW that causes each 
CRW to grow. The strength of this attributable wind field depends on the meridional 
scale of the wave. HMR refer to this dependency as the scale effect. For the Rayleigh 
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problem, the wind attributable to the vorticity CRW at one edge is attenuated by a factor 
of e-K by the time it reaches the opposing edge. Thus, there is a trade-off between 
the optimal phase for mutual amplification (AE = n/4) and the wavelength for minimal 
attenuation (K = 0), since both of these properties are functions of the wavelength. The 
maximal growth rate: 

is obtained for the wave number Kma 0.797 and the phase difference AEmm x 
0 .646~ ,  see Figs. l(b) and 3(e). The phase diagram for non-modal waves at the wave 
number is given in Fig. 3(d). 

The CRWs approach is not limited only to two interacting Rossby waves, and in 
fact CRWs can be generated on every interface that lies between two different vorticity 
strips. Also, since any mean wind profile, u(y),  can be approximated, in principle, 
by a piecewise-linear function, such an approximation breaks apart the mean flow 
into sequences of different vorticity strips. Then, the perturbation dynamics can be 
crudely represented in terms of the multi-interactions between all of the CRWs that 
are generated on the interfaces between each pair of neighbouring vorticity strips. In 
order to demonstrate such a process, we discuss in the following section, a simple multi- 
interaction between three CRWs. 

3. TWO VORTICITY STRIPS 

Consider the basic state (Fig. 5(a)): 

0 for y 2 b 
A f o r O < y < b  
-A f o r - b < y < O  I 0 fory < -b. 

(17) 

0 for y 2 b 
A(b - y) for 0 < y c b 
A ( b + y )  f o r - b < y < O  
0 for y < -b 

and i j=  

This flow crudely resembles a barotropic jet, or if we add a constant mean wind 
U = -Ab, it may be viewed as a rough approximation to the leeward wake of westward 
flow around isolated topography, e.g. SchP and Smith (1993). 

The discrete spectrum solution can be represented by three CRWs, which are located 
on the three mean vorticity interfaces y = (4, 0, b}, with the stream function: 

(18) 

where S, M and N are the amplitudes of the southern, middle and northern CRWs 
respectively, and es,  Em and En are their phases. Substituting (18) into (2) for the three 
interfaces, gives the equations governing the CRWs, viz: 

- 

= {s(t) e-kl~+bl ,ies(r) + M(t) e-klyl eiem(r) + N(t) e-kl~-bl eien(t)} e*x 9 
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The above equations describe similar interactions to those described by (14). Here, 
however, the growth and the counter-propagation of each CRW is affected by the 
meridional wind attributable to not one but to two other CRWs. 

= kcinm # 0, 
then we get from (19a) and (19c) that cs = En; M / 2  = S = N; and kcinm = A e-K/2 
sin(AEnm), where AEnm = Em - es = Em - En. Consequently, (19a) and ( 1 9 ~ )  are effec- 
tively equivalent to each other and so (19d) is equivalent to (190. Thus, the symmetric 
solution is governed by four equations that have some similarities with the vorticity strip 
of Rayleigh. The same real phase-speed condition, cs = cn = Crnmr requires from (19d) 
to (190 that 

Looking for the symmetric NMs solution where $ = & = k 

AEnm = f c o ~ - ' [ - { e ~ / ~ ( 3  - K )  + e-K/2}/4], (20) 

where positive AE refers to the growing mode. Note that in this problem the modes are 
not stationary but propagate with a phase speed: 

which decreases with the wavelength. 
As in the original Rayleigh problem as K + 0, then AEnm + n. According to 

(20) also, the middle CRW is n / 2  upstream of its neighbouring CRWs, i.e. in a 
pure configuration for amplification, when K = 3 + e-K * 3.047. The most unstable 
NM is obtained for Km, = 2.452, with a phase difference AEnm = 0 . 6 8 2 ~  and with 
a growth rate of * 24.7% of the shear A. The short wave number cutoff occurs at 
Kc = e-KC + 4 ecKCI2 + 3 X 3.665. At higher wave numbers all the modes have the 
same phase, i.e. Em = En = E ,  and thus the modes are neutral. Denoting x = M / N ,  
where N = S, the condition cs = cm = cn = crnm, yields the quadratic equation x 2  + 
{eKi2(3 - K )  + e-K/2)X + 4 = 0. The first root, XI ,  is always larger than 2 for wave 
numbers larger than the short-wave cut-off. This is the case where the middle CRW 
is strongly helping the northern and the southern CRWs to counter-propagate to the 
east and consequently Ab/2  .c Crnm c Ab. The second root, x2, is always between 2 
and 0 for these wave numbers, and corresponds to the case where the northern and 
the southern CRWs are strongly helping the middle CRW to counter-propagate to the 
west. Consequently, the NM phase speed remains eastward but relatively small, i.e. 
0 .c Crnm < Ab/2.  The dispersion relation is summarized in Fig. 5(b). The most unstable 
NM stream function and the three CRWs which compose it, are presented in Fig. 5(c). 



2850 E. HEIFETZ. C. H. BISHOP and P. ALPERT 

I - q = o  

I 
I - 
I q = o  

Figure 5.  (a) The barotropic jet. Arrows indicate the zonal mean wind u; the symbols are as in Fig. l(a). (b) As 
Fig. l(b) but for the dispersion relation of the normal modes, NMs, obtained from the basic state described in 
Fig. 5(a). Here Aenm is the phase difference between the counter-propagating Rossby wave (CRW) in the middle 
and the two CRWs on the edges. (c) Stream function fields of the most unstable NM and the three CRWs that 
compose it, corresponding to maximum wave number Kmax M 2.45. Light shading indicates positive and dark 

shading negative values. 
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4. CONCLUDING REMARKS 

The main goal of this paper was to fill a gap in thd present literature on CRWs, 
which either gives primarily a descriptive picture of the CRW interaction (HMR, for 
instance) or presents a relatively complicated and detailed rigorous analysis (Davies 
and Bishop 1994, for instance). Here, we have presented one of the simplest problems 
that the CRW approach can be applied to-the Rayleigh (1880) problem. Because of the 
simple inversion relation between vorticity and stream function, the roles of the different 
terms in the CRWs’ dynamic equation are relatively easy to interpret. 

We have argued that the ‘explanation’ of shear flow instability that can be gleaned 
from standard NM analyses is unsatisfactory as it does not provide tools to make 
qualitative estimates of how non-trivial changes in the basic state shear flow will affect 
the stability of the shear flow. Furthermore, it does not provide an overview of how the 
structure of all possible linear combinations of conjugate NMs will evolve in time. In 
contrast, the CRW perspective makes it very easy to predict how the complete range 
of modal and non-modal waves will evolve. It also allows thought experiments to be 
performed to determine qualitatively how changes in the basic state shear flow are likely 
to affect the instability of the shear flow. 

To illustrate that the CRW approach is not limited to flows with just two distinct PV 
gradients, we also analysed the stability of a jet flow consisting of two contiguous strips 
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of oppositely signed vorticity in terms of the interaction of three CRWs, that interact in 
a similar manner to the two CRWs of the Rayleigh problem. 

The two simple models considered in this paper bear a crude resemblance to the 
shear flows existing at fronts, jets, wake flow beyond topographic obstacles and other 
meteorological phenomena. While our solutions are far too simple to yield quantitatively 
reliable information about these flows, the CRW framework should provide qualitatively 
correct predictions about wave development on these flows. 
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