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Abstract We revisit the analogy suggested by Madelung between a non-relativistic
time-dependent quantum particle, to a fluid system which is pseudo-barotropic, irro-
tational and inviscid. We first discuss the hydrodynamical properties of the Madelung
description in general, and extract a pressure like term from the Bohm potential. We
show that the existence of a pressure gradient force in the fluid description, does
not violate Ehrenfest’s theorem since its expectation value is zero. We also point out
that incompressibility of the fluid implies conservation of density along a fluid parcel
trajectory and in 1D this immediately results in the non-spreading property of wave
packets, as the sum of Bohm potential and an exterior potential must be either constant
or linear in space. Next we relate to the hydrodynamic description a thermodynamic
counterpart, taking the classical behavior of an adiabatic barotopric flow as a refer-
ence. We show that while the Bohm potential is not a positive definite quantity, as
is expected from internal energy, its expectation value is proportional to the Fisher
information whose integrand is positive definite. Moreover, this integrand is exactly
equal to half of the square of the imaginary part of the momentum, as the integrand
of the kinetic energy is equal to half of the square of the real part of the momentum.
This suggests a relation between the Fisher information and the thermodynamic like
internal energy of the Madelung fluid. Furthermore, it provides a physical linkage
between the inverse of the Fisher information and the measure of disorder in quantum
systems—in spontaneous adiabatic gas expansion the amount of disorder increases
while the internal energy decreases.
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1 Introduction

A year after Erwin Schrödinger published his celebrated equation, Erwin Madelung
showed (in 1927) that it can be written in a hydrodynamic form [1]. Madelung’s
representation has a seemingly major disadvantage by transforming the single linear
Schrödinger equation into two nonlinear ones. Nonetheless, despite of its additional
complexity, the hydrodynamic analogy provides important insights with regard to the
Schrödinger equation [2–6]. The Madelung equations (ME) describe a compressible
fluid, and compressibility yields a linkage between hydrodynamic and thermodynamic
effects. The work done by the pressure gradient force to expand the flow transforms
internal thermal microscopic kinetic energy to the macroscopic hydrodynamic kinetic
energy of the flow. In this paper we wish to examine to what extent such a linkage can
be made and what added value it provides in understanding quantum systems.

ME can be obtained when taking the non-relativistic time dependent Schrödinger
equation (TDSE) of a particle with massm, under the presence of an external potential
U (r, t):

i h̄
∂�

∂t
= Ĥ� =

(
p̂2

2m
+U

)
� =

(
− h̄2

2m
∇2 +U

)
�. (1)

Assuming that the wave function� is continuous and can be written in the polar form

�(r, t) = √
ρ(r, t)ei S(r,t)/h̄, (2)

then together with the de Broglie guiding equation for the velocity

u = ∇ S̃ (3)

where the tilde superscript represents hereafter a quantity per unit mass m, so that
S̃ = S

m , the real part of the TDSE becomes the continuity equation

D

Dt
ln ρ = −∇ · u , (4)

and the imaginary part becomes

∂ S̃

∂t
= −(K̃ + Q̃ + Ũ ), (5)

where K̃ = u2/2 is the kinetic energy per unit mass and

Q̃ = − h̄2

2m2

∇2√ρ√
ρ

(6)
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is the Bohm potential per unit mass [7]. Generally (u · ∇)u = ∇ K̃ + ω × u, where
ω = ∇ × u is the vorticity, however for a potential flow in the form of (3), the flow
is irrotational, i.e., ω = 0, and therefore when applying the nabla operator on (5) we
obtain

D

Dt
u = −∇ Q̃(ρ) − ∇Ũ , (7)

where D
Dt ≡ ∂

∂t +u · ∇, is the material (Lagrangian) time derivative of a fluid element
along its trajectory. Equations (4) and (7) map the TDSE to a pseudo-barotropic,
inviscid flowwhere (7) is its inviscidNavier–Stokes (i.e., Euler) equation. As indicated
by [8], in order for this formalism to be equivalent to the Schrödinger equation, one
should also add a quantization condition.

The paper is organized as follows. In Sect. 2 we examine the hydrodynamical
properties of the ME. In Sect. 3 we relate them to their thermodynamical properties,
and show how the Fisher information provides an analogy to the internal thermal
energy of the flow. Discussion of the results appears in Sect. 4.

2 Hydrodynamic Properties of the Madelung Equations

2.1 The Continuity Equation

It is somewhat surprising that we can describe the quantum state of a single particle
in terms of a fluid whose mass density ρ f luid(r, t) = δM/δV is the probability
density ρ(r, t) of the wave function to find the particle m in location r at time t (δM
is an infinitesimal “fluid mass” occupying an infinitesimal volume δV , where M is
non-dimensional since it represents probability). The continuity Eq. (4) is usually
represented in its Eulerian form

∂ρ

∂t
= −∇ · J, (8)

where J = ρu is the flow mass flux. In its Lagrangian representation however, (4)
simply reflects the statement that a “fluid parcel” conserves its mass δM as it moves
with velocity u, i.e., D

Dt (δM) = 0. Equation (4) is then obtained when noting that
∇ · u = D

Dt ln(δV ) is the flow compressibility term. Hence, when the flow is incom-
pressible D

Dt ρ = 0, and that is to say that the density is conserved along a “fluid
parcel” trajectory. This is indeed the case when the wave function is represented by a
single plane wave since then u = h̄k̃, where k is the wavenumber vector. Nonetheless,
interference between two plane waves or more yields ∇ · u �= 0 in general, and thus
the probability to find a particle along a trajectory constructed from (3) varies along
the trajectory itself. In 1D, incompressibility implies that u is not a function of space,
and therefore ρ is non-spreading whether or not the flow is accelerating.
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2.2 Relating the Bohm Potential to a Pseudo Barotropic Pressure

For an inviscid flow, in the presence of an exterior potential U , the Euler equation
(Newton’s second law essentially) reads:

D

Dt
u = − 1

ρ
∇P − ∇Ũ , (9)

where the pressure P is a known thermodynamic property. Furthermore, if the flow is
barotropic, that is the pressure P is a function of density only, the pressure gradient
force (PGF) can be written as a perfect gradient

− 1

ρ
∇P(ρ) = −∇ Q̃(ρ), (10)

where Q̃ = ∫ dP
ρ

is defined up to an unspecified time dependent gauge function.
Hence, taking then the curl of (9) we obtain

∂ω

∂t
= ∇ × (u × ω), (11)

therefore, if ω(t = 0) = 0, the vorticity remains zero at all times and thus the velocity
field can be represented as a potential flow of the form of (3). In regions where ρ = 0,
the vorticity can be non-zero in principle, as in superfluid singularities, however we
refrain here from discussing such cases.

It is worth noting that Euler had derived Eq. (9) in 1757 more than a century before
the thermodynamic kinetic theory of gaseswas established byMaxwell andBoltzamnn
in 1871. Hence, the knowledge that the pressure results from the aggregated effect of
microscopic random motions of molecules or atoms impacting each other, was not
necessary to Euler to formulate it as a macroscopic force per unit area that is somehow
associated with the intrinsic properties of the fluid. In a sense, this is what we try to
do next with respect to the Madelung Eq. (7). Here, the starting point is the known
function of the Bohm potential Q(ρ), hence we can solve (10) for P to obtain:

P = �(ρ) + f (t) (12)

where

�(ρ) = −
(

h̄

2m

)2

ρ∇2 ln ρ, (13)

and f (t) is a time dependent gauge function. Here we used the identity

∇2α

α
= ∇2 ln α + (∇ ln α)2, (14)
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to extract P from Q̃ in (10). As � depends on spatial derivatives of the density, it
cannot be defined as a proper thermodynamic pressure, hence a possible appropriate
name for it could be a pseudo pressure or a pressure like term1. An example that makes
sense of (13) is a normal probability density function, as it is straightforward to see
that � ∝ ρ, which is true for an ideal isothermal perfect gas.

In the absence of an external potential U , it is surprising that the quantum state of
a free particle is mapped into a fluid that can be accelerated by a force, even if this
force is the PGF which is internal to the flow. However, defining the acceleration as
a = Du

Dt , its expectation value can be found to be

〈a〉 =
∫

�∗a�dV =
∫

ρa dV = −
∫

PdA (15)

where the integrations are taken over the whole domain V . Thus, if ρ is bounded
within the domain and vanishes at the domain boundary A, then the net expectation
value of the acceleration is zero and Ehrenfest’s theorem is not violated.

2.3 Flow Incompressibility and Non-spreading Wave Packets

As pointed out in Sect. (2.1), when the flow is incompressible (∇ · u = 0), density
is conserved along “fluid parcel” trajectories. It is worth noting that this statement is
equivalent to the one that a wave packet following such trajectory is non-spreading.
Furthermore, since Du

Dt = ∂u
∂t + ω × u + ∇(u2/2), and the flow is irrotational, (7)

becomes

∂u
∂t

= −∇
(
K̃ + Q̃ + Ũ

)
. (16)

Specifically, for 1D flow, incompressibility ( ∂u
∂x = 0) implies that u can be only a

function of time and (16) becomes

∂u

∂t
= − ∂

∂x

(
Q̃ + Ũ

)
= g(t), (17)

posing the constraint on the potentials: Q̃ + Ũ = a(t)x + b(t). Among the potentials
mentioned in the literature which satisfy this non spreading condition are: (i) the
free Airy wave packet (

√
ρ ∝ Ai(x) & U = 0) [9]; (ii) the gravitational “quantum

bouncer” (
√

ρ ∝ Ai(x)&U ∝ x) [10]; (iii) the ground state of the harmonic oscillator

(
√

ρ ∝ e−x2 & U ∝ x2) [10].

1 Indeed, more complex interpretations have been suggested with regards to the quantum pressure [3,5],
however the proposed pressure like term still seems to us the most straightforward one as we are seeking
for the simplest analogy. A second rank tensor of the Cauchy stress tensor, embedding shear terms, as
well as the introduction of turbulence to the ME, or the representation of it in terms of nonlinear diffusion
are interesting interpretations, however they involve an amount of complexity that we try to avoid when
considering the dynamics of a single quantum particle.
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3 Thermodynamic Like Properties of the Madelung equations

In this section we examine to what extent onemay associate thermodynamic like prop-
erties with the Madelung description, in reference to the thermodynamic of classical
barotorpic conservative (adiabatic) flows.

3.1 Energy Conservation

Consider a classical, adiabatic (entropy conserving, hence inviscid), barotopric flow.
In the absence of heat exchange, the first law of thermodynamics reads, d I = −PdV ,
where I is the thermal internal energy, representing the macroscopic aggregated effect
of the microscopic random thermal fluctuations. Hence, during an adiabatic process,
compression of a fluid parcel by its surroundings performs work that increases its
internal energy. If, however, the flow is incompressible, the internal energy remains
unchanged. When following materially a fluid parcel in motion, the adiabatic first law
is transformed into

ρ
D

Dt
Ĩ = −P

D

Dt
ln(δV ) = −P∇ · u. (18)

Multiplying (9) by ρu and combining it with (18), then for a time independent external
potential U , we obtain

ρ
D

Dt

(
K̃ + Ĩ + Ũ

)
= −∇ · (uP). (19)

Thus, the total energy of a fluid parcel per unit mass

ẼCl = (K̃ + Ĩ + Ũ ), (20)

is not materially conserved simply because the fluid parcel is not an isolated system
(the subscript Cl denotes classical fluid). The surrounding pressure can change the
parcel internal energy by compression and the pressure gradient can accelerate the
parcel and hence change its kinetic energy. Nonetheless, the overall total energy of
the fluid is conserved in the domain averaged sense. We can use (4) to obtain that for
any scalar field α, ρ Dα

Dt = ∂
∂t (ρα) + ∇ · (ρuα), and therefore if all fluxes vanish on

the domain boundaries we obtain

∂

∂t
〈ẼCl〉 = ∂

∂t

∫
ρ ẼCldV = 0. (21)

On the other hand, direct calculation of the energy expectation value from the
Schrödinger Eq. (1), yields the conservation of the total energy (assuming as well that
all fluxes vanish on the domain boundaries):

〈ẼQu〉 = 1

m

∫
�∗

(
− h̄2

2m
∇2 +U

)
�dV = 〈K̃ + Q̃ + Ũ 〉, (22)
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where Q̃ is the Bohm potential (per unit mass) given by (6), and the subscript Qu refers
to a quantum like fluid. Comparing (20) with (22) suggests therefore that 〈Q̃〉 = 〈 Ĩ 〉.
A similar argument, arising from a different perspective, has been recently suggested
in [11]. The Bohm potential by itself, however, is not a positive-definite term, as is
expected from internal energy. Nonetheless its expectation value yields, after integra-
tion by parts,

〈Q̃〉 =
〈
1

2

[
h̄

2m
∇(ln ρ)

]2〉
= 1

2

(
h̄

2m

)2

F I, (23)

where F I = ∫ 1
ρ
(∇ρ)2dV = ∫

ρ[∇(ln ρ)]2dV is the Fisher information, in the
form presented in [12,13]. For instance for normal distribution the Fisher information
is inversely proportion to its variance, and according to the Cramer–Rao bound the
general variance of any unbiased estimator (like the location of a particle r at time
t) is always larger (or equal for normal distribution) to 1/F I [13]. Therefore we can
choose to define the positive definite internal energy per unit mass as

Ĩ = 1

2

[
h̄

2m
∇(ln ρ)

]2
. (24)

Furthermore, this choice suggests a relation between the quantum thermal energy and
the imaginary part of the momentum field. Writing the momentum in the form of

p̂� = [−i h̄∇ ln�]� ≡ p�, (25)

we can define the complex velocity field as

v ≡ p̃ = vr + ivi (26)

where

vr = u = ∇ S̃, vi = − h̄

2m
∇(ln ρ). (27)

This partition has been suggested, by [14,15] in different contexts. Imaginary momen-
tum is a somewhat strange concept, however herewe simply note that in the same sense
that under the de Broglie guiding Eq. (3), the macroscopic kinetic energy of the flow
is K̃ = 1

2v
2
r , under (24) Ĩ = 1

2v
2
i , suggesting that within this analogy, the microscopic

thermalmotion is represented by the imaginarymomentum.Moreover, the expectation
value of random fluctuations must be zero by definition, and indeed the expectation
value of each component of vi is proportional to the Fisher score which is zero.

As pointed out by [12,13] the inverse of the Fisher information can be used to
measure the degree of disorder in the system and it tends to increase with time. In this
sense, the Fisher information measures the “narrowness” of the position distribution
around the actual position of the particle [12]. The relation of the internal energy of
the Madelung flow to the Fisher information provides a physical interpretation of this
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statement. Consider a gas expanding spontaneously in an adiabatic process. The degree
of disorder increases and according to the first law of thermodynamics (18) the internal
energy decreases. The fact that the Fisher informationmay provide better estimation to
disorder than the negative entropy (negentropy), may result from the fact that during
adiabatic expansion the thermodynamic entropy remains unchanged. Furthermore,
in the absence of an external potential, 〈K̃ + Ĩ 〉 is conserved and if 〈 Ĩ 〉 decreases
during expansion the kinetic energy and momentum become more pronounced. This
may suggest a different angle to the relation between the Fisher information and the
Heisenberg uncertainty principle [16].

3.2 The Bohm Potential and Pseudo Enthalpy

Equation (10) can be rewritten as well in the form

∇ Q̃ = 1

ρ
∇P =

(
P

ρ2

)
∇ρ + ∇

(
P

ρ

)
, (28)

and for classical barotropic adiabatic flows we can substitute the continuity equation
(4) with the first law of thermodynamics (18) to obtain

D

Dt
Ĩ = P

ρ2

D

Dt
ρ ⇒ d

dρ
ĨCl(ρ) = PCl(ρ)

ρ2 . (29)

Hence for classical barotropic adaibatic flows, (29) implies that

[
Q̃ =

(
Ĩ + P

ρ

)
+ B̃e(t) = Ẽnt + B̃e(t)

]
Cl

, (30)

where Ẽnt =
(
Ĩ + P

ρ

)
is the enthalpy per unit mass and B̃e(t) is a time dependent

gauge function that is equal to the Bernoulli potential (as will be seen in the next
subsection). On the other hand, for the quantum flow, (6), (13) and (24) indicate that
the Bohm potential satisfies

[
Q̃ =

(
− Ĩ + �

ρ

)]
Qu

. (31)

This modified form of quantum enthalpy does not violate the equality 〈Q̃〉 = 〈 Ĩ 〉,
since it is straightforward to show that

∫
�dV = 2〈 Ĩ 〉. Hence, although �(ρ) is not

a positive definite quantity, its domain averaged value is always positive.

3.3 The Bernoulli and Hamilton–Jacobi Equations

For completeness we discuss the relation between the Bernoulli and Hamilton–Jacobi
equations in classical and quantum systems. If the flow is potential of the form of (3)
we can obtain from (7) the time dependent Bernoulli equation
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∇ B̃e(t) = 0, B̃e(t) = ∂ S̃

∂t
+ (K̃ + Q̃ + Ũ ), (32)

so that together with (30)

[
∂ S̃

∂t
= −

(
K̃ + Ẽnt + Ũ

)
= −H̃

]
Cl

, (33)

where H̃Cl differs from ẼCl in (20) by the term of P
ρ
. Moreover, since the thermo-

dynamic pressure is positive definite it is clear that
[
〈H̃〉 �= 〈Ẽ〉

]
Cl
. With this alert

in mind, (33) can be regarded as the fluid mechanics version of the Hamilton–Jacobi
equation. Since the velocity potential is only a function of time and space, S̃ = S̃(r, t)
(and not of the momentum p), the material derivative DS̃

Dt = ∂ S̃
∂t +2K̃ , is the total time

derivative in the phase space of (r,p). Substituting in (33) we obtain

DS̃

Dt
= K̃ −

(
Ẽnt + Ũ

)
= L̃ ⇒ S̃ =

∫
L̃ Dt, (34)

where L̃ and the velocity potential S̃ may serve respectively, as the Lagrangian and
action of this system (where the material integration in time follows the fluid par-
cel). Requiring the action to be stationary by Hamilton’s principle, we obtain that
(7) becomes the Euler–Lagrange set of equations. To the best of our knowledge
this relation between the Bernoulli and the Hamilton–Jacobi equations has not been
acknowledged in the literature.

In the quantum realm the starting point is Eq. (5), thus B̃e(t) = 0 and H̃Qu =
(K̃ − Ĩ + �

ρ
+ Ũ ). But unlike the classical counterpart, here indeed

[
〈H̃〉 = 〈Ẽ〉

]
Qu

.

4 Discussion

The ME suggests an alternative appealing description to the Schrödinger equation by
associating the behavior of a non relativistic quantum particle to the dynamic of a fluid.
This provides an additional important intuition, although that in principle the nonlinear
fluid dynamic equations are much more complex than the single linear Schrödinger
one. Any compressible flow exchanges kinetic energy with thermal internal energy
as both result from the motion of the particles composing the flow. The Madelung
flow is compressible, however the ME do not provide an explicit description of the
involved thermodynamical processes. Moreover, the Madelung flow is a (pseudo)
barotropic, potential (and hence irrotational), inviscid flow. The thermodynamics of
classical flows which encompasses such properties, is simple, elegant and intuitive.
Therefore, our motivation here was to examine to what extent we can relate to the
Madelung flow, thermodynamic like properties. Throughout the text we repeat using
terms such as “like” and “pseudo”, in order to keep in mind that the Madelung fluid is

123



Found Phys

a pure analogy. As pointed out in Sect. 2.1 the “fluid density” is the probability density
function to find a single quantum particle in location r at time t .

In the first part of this paper we revisited the Madelung hydrodynamic analogy to
the Schrödinger description in the presence of an exterior potential. The aim was to
present this alternative, and somewhat surprising view, in a way that is appealing both
to quantum physicists and classical fluid dynamicists. Furthermore, a few examples
have been briefly discussed (with respect to 1D non spreadingwave packets) in order to
exemplify how thehydrodynamicperspective canbe intuitive andhelpful to understand
the behavior of quantum systems.

In the second part we suggested a complementary, thermodynamic description to
the Madelung equations, where the classical thermodynamics is taken as a reference.
We find that conservation of energy, implied from the Schrödinger equation, suggests
that the expectation value of the Bohm potential is proportional to the expectation
value of the internal energy in classical fluids. However, the Bohm potential is not
a positive definite function of density, as is expected from the internal energy of
barotropic fluids. Nevertheless, since the expectation value of the Bohm potential is
proportional to the Fisher information, and the latter’s integrand is a positive definite
function of density, we related it to an equivalent thermal internal energy. This provides
a direct physical link between the decrease in Fisher information and the amount of
disorder increase spontaneously with time. According to the Cramer–Rao bound the
variance of the Fisher information is at least inversely proportional to the variance
of the probability density function of the particle location, and as disorder increases
with time the Fisher information decreases and the probability variance increases. In
the compressible adiabatic fluid analogy, spontaneous adiabatic expansion of fluids
decreases their internal energy and increases the amount of disorder in the fluids. Since
in adiabatic processes the thermodynamic entropy remains constant by definition, this
analogy may strengthen the claims that the (inverse of the) Fisher information is a
more suitable measure of disorder in quantum systems than entropy.

Moreover, the quantum momentum operator is generally a complex function,
however the de Broglie guiding equation makes use only of its real component.
Nonetheless, if the amplitude of the density is space dependent the momentum has
an imaginary counterpart. We find it elegant that as the macroscopic kinetic energy
of the quantum fluid is proportional to the square of the real part of the momentum,
the internal energy is proportional to the square of the imaginary one. Furthermore,
the expectation value of components of the imaginary part of the momentum is zero
(proportional to the Fisher score), which is expected for random thermal fluctuations.
This suggests that within the fluid analogy the real part of the momentum represents
the domain averaged momentum of the fluid and the fluctuation from this mean is
represented by the imaginary part.

The classical thermo-hydrodynamics of a barotropic conservative fluid cannot be
mapped however, as is, to the Madelung fluid. This results from the different starting
points of the two systems. In the classical form the pressure is a well defined ther-
modynamic property that is a function of density itself (and not of spatial gradients
of density). Then the momentum dynamics is described by the Euler equation where
the pressure gradient force can be introduced as a perfect gradient of a function that
is density dependent but can be defined up to some additional time dependent gauge
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function. Furthermore, an internal thermal energy exists and obeys the first law of
thermodynamics and this implies that the density dependent function of the perfect
gradient is the enthalpy of the system. Domain energy conservation is obtained when
transforming the momentum equation into mechanical energy one and augmenting it
with the first law of thermodynamics and the continuity equation. One can also obtain
the Bernoulli (which is the Hamilton–Jacobi) equation from the Euler equation up to
the undefined Bernoulli potential time dependent function.

In the quantum case, the real part of the Schrödinger equation is mapped into the
classical continuity equation, however its imaginary part is mapped into a Bernoulli
like equation with zero gauge function and a well defined density dependent Bohm
potential which is not necessary the Enthalpy of the system. Then the Euler equation
for barotorpic flow is obtained when the nabla operator is applied on the Bernoulli like
equation. Hence, although the Euler equation in the two systems looks the same, it is
obtained in two fundamental different ways. We can then extract a pressure like form
from theBohmpotential but this pseudobarotropic pressure has a function that depends
on the density gradient rather then the density itself, and moreover can be defined only
up to a time dependent gauge function. Furthermore, no internal energy is defined
a-priori from thermodynamic considerations, and the first law of thermodynamics is
not a postulate of the system. On the other hand, the domain averaged conservation of
the total energy is obtained directly from the Hamiltonian of the Schrödinger equation.
Although it looks like the Bohm potential plays the role of the internal energy in the
Hamiltonian it is not a positive definite quantity, as opposed to the Fisher integrand
that provides the same expectation value as the Bohm potential.

Overall, the suggested thermodynamic description of the Madelung flow is formed
here using a top-down approach in the sense that we do not build the macroscopic
thermodynamic parameters bottom-up from a comprehensive statistical microscopic
theory. This is somewhat similar to the approach taken by Euler when deriving the
simplifiedmomentum equation of fluid flows before the thermodynamic kinetic theory
of gases has been developed.

In future works it could be interesting to relate this suggested formalism to Zitter-
bewegung in a similar manner to [14] and also to the zero point field in QED [17].
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