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Abstract The Madelung equations map the non-relativistic time-dependent
Schrödinger equation into hydrodynamic equations of a virtual fluid. While the von
Neumann entropy remains constant, we demonstrate that an increase of the Shannon
entropy, associatedwith thisMadelung fluid, is proportional to the expectation value of
its velocity divergence. Hence, the Shannon entropy may grow (or decrease) due to an
expansion (or compression) of the Madelung fluid. These effects result from the inter-
ference between solutions of the Schrödinger equation.Growth of the Shannon entropy
due to expansion is common in diffusive processes. However, in the latter the process
is irreversible while the processes in the Madelung fluid are always reversible. The
relations between interference, compressibility and variation of the Shannon entropy
are then examined in several simple examples. Furthermore, we demonstrate that for
classical diffusive processes, the “force” accelerating diffusion has the form of the
positive gradient of the quantum Bohm potential. Expressing then the diffusion coeffi-
cient in terms of the Planck constant reveals the lower bound given by the Heisenberg
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uncertainty principle in terms of the product between the gas mean free path and the
Brownian momentum.

Keywords Madelung equations · Entropy · Hydrodynamics

1 Introduction

The Madelung equations [1] transform the non-relativistic time-dependent Schrödin-
ger equation into hydrodynamical equations of an Eulerian fluid [2–5]. The aim of this
study is to explore the entropy properties of the Madelung fluid and compare these
with the ones of classical Eulerian fluids.

The hydrodynamical transformation is obtained when considering the Schrödinger
equation,

i h̄
∂�

∂t
= Ĥ� =

(
p̂2

2m
+U

)
� =

(
− h̄2

2m
∇2 +U

)
�, (1)

for a continuous wave function �(r, t) = √
ρ(r, t)ei S(r,t)/h̄ (so that ρ = �∗�) of a

particle with mass m, in the presence of an external potential U (r, t). Using the de
Broglie guiding equation, ua = ∇ S̃ (where the tilde superscripts represent hereinafter
quantities per unit mass m), the real part of (1) becomes the continuity equation

∂ρ

∂t
= −∇ · (ρua), (2)

where the imaginary part of the Schrödinger equation becomes the Eulerian fluid
momentum equation,

Da

Dt
ua = −∇ Q̃(ρ) − ∇Ũ . (3)

Here, Da
Dt ≡ ∂

∂t + ua · ∇, is the material (advective) time derivative of a fluid element

along its trajectory and Q̃ = − h̄2

2m2
∇2√ρ√

ρ
is the Bohm potential per unit mass [6]

(for further relations between the Madelung formulation and the de Broglie–Bohm
interpretation of quantum mechanics we refer the reader to [4,6–8]).

In Ref. [5], it was suggested that the conservation of the domain integrated energy
in (1) implies that the Madelung fluid is adiabatic. The fluid conserves the sum of
the domain integrated kinetic, potential and internal energy, where the latter is given
by the Fisher information. The domain averaged adiabaticity is in agreement with the
conservation of the von Neumann entropy. The von Neumann entropy, i.e., the trace
EntV N = −kB Tr [ρ̂ ln ρ̂], where kB is the Boltzmann constant and ρ̂ the density
matrix of a closed system with a general (possibly time dependent) Hamiltonian,
cannot (by virtue of unitary time evolution) change with time. One may, nevertheless,
devise other illuminating entropy functionals (e.g., the “diagonal entropy” of [9]) that,
even for closed systems, transparently adhere to standard thermodynamic relations
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(including the second law of thermodynamics). In the current work, our focus is on
quantities associated with the Madelung fluid. Domain averaged adiabaticity of the
Madelung fluid does not imply that entropy is materially conserved by a “fluid parcel”.
This viable non-conservation differs, for instance, from the thermodynamic entropy
of mono-atomic ideas gasses, EntT = kB ln (T 3/2/ρ), which is materially conserved
in adiabatic processes, Da

Dt EntT = 0 [10].
We find that the classical Madelung fluid dynamics motivates the introduction of its

associated “Shannon entropy” (EntS) [11]. For the standard density ρ(r, t) ≡ �∗�
in real space we set

EntS ≡ −kB

∫
ρ ln ρdr ≡ kB

∫
sdr. (4)

This Shannon entropy captures, for instance, the change in classical thermodynamic
entropy during Joule free expansion of an ideal gas into a vacuum, and can be regarded
as the configurational Boltzmann entropy of the Madelung fluid (as discussed in the
Appendix). EntS may vary in time, in contrast to EntV N , which remains unchanged
under unitary time evolution.

The remainder of this work is organized as follows. In Sect. 2, we examine the Shan-
non entropy production in the Madelung fluid via expansion by considering examples
of both reversible and irreversible processes. In Sect. 3, we show that for classical
diffusion the positive value of the Bohm potential gradient acts as an effective force.
This implies that the Bohm potential represents diffusive processes in the Madelung
fluid, as discussed in Sect. 4. Summary and conclusions appear in Sect. 5.

2 The Shannon Entropy Production and Compressibility Effects

Within the definition of (4), the continuity equation (2) yields

∂s

∂t
+ ∇ · (sua) = ρ∇ · ua, (5)

and if all fluxes vanish at the domain boundaries, we immediately obtain that

∂

∂t
EntS = kB

∫
ρ∇ · uadV = kB〈∇ · ua〉 = kB〈∇2 S̃〉. (6)

Hence, the total entropy production is equal to the expectation value of the divergence,
i.e., the Shannon entropy grows through expansion of the fluid and may decay through
compression. For the Madelung fluid to be compressible, the quantum action S must
have a “source” in the sense that it has to satisfy some Poisson equation in the form
of ∇2S �= 0. From the wave function perspective, compressibility results from super-
position. For a single plane wave solution of the form � = √

ρei(k·r−ωt) = √
ρei S/h̄ ,

ua = ∇ S̃ = h̄
mk. Thus, the advective velocity is simply proportional to the wave vec-

tor k and ∇ · ua = 0. However, when two plane waves or more interfere, ∇ · ua �= 0
in general.
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In the next two simple examples we show how a superposition of plane waves
triggers entropy growth. We will furthermore see how compressibility may lead to
a reversible process. In the two cases we consider, the dynamics of a 1D Gaussian
density solution that has been derived by [12],

ρ(x, t) = 1

σ(t)
√
2π

e
− x2

2σ2(t) . (7)

Substituting (7) in the continuity equation (2) yields

ua(x, t) = x
∂ ln σ

∂t
	⇒ ∇ · ua = ∂ ln σ

∂t
. (8)

(i) First we consider the case of a free particle. Substituting (7) and (8) in the 1D
version of (3) for Ũ = 0 yields

σ
∂2σ

∂t2
=

(
h̄

2mσ

)2

	⇒ σ 2 = σ 2
0 +

(
h̄t

2mσ0

)2

. (9)

The Shannon entropy

EntS = kB ln (σ
√
2πe) = EntS0 + kB

2
ln

⎡
⎣1 +

(
h̄t

2mσ 2
0

)2
⎤
⎦ . (10)

Thus,

1

kB

∂EntS
∂t

= ∇ · ua = ∂ ln σ

∂t
= t(

2mσ 2
0

h̄

)2

+ t2
> 0. (11)

These results illustrate how the superposition of planewaves in theGaussianwave
packet of Eq. (7) influences the compressibility of the Madelung fluid and how it
gives rise to an increase of entropy. For a free particle, a 1D plane wave solution of

(1) has the form of � = A(k)eik[x−( h̄
2m )kt], hence the dynamic Gaussian solution

of (7) is a continuous superposition of plane waves whose amplitude A(k) ∝
e−(σ0k)2 , as can be verified from the Fourier transform of the square root of (7) at
time t = 0.

(ii) As a second example we consider (7) in the presence of the harmonic potential
U = m

2 (ω0x)2 to obtain from (3):

σ
∂2σ

∂t2
= ω2

0(σ
2
0 − σ 2), σ 2

0 = h̄

2mω0
, (12)
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which can be solved numerically. Thewell known stationary ground state solution

(e.g. [13]) in which σ = σ0, is a special case of (12) where ρ0 = 1
σ0

√
2π

e
− x2

2σ20 ,

and the Shannon entropy is constant.

EntS0 = −kB

∫
ρ0 ln ρ0dx = kB ln (σ0

√
2πe). (13)

As pointed out by [5], and is evident from (8), the only possible solution for the
velocity in this case is ua = 0, hence the Madelung fluid is obviously incom-
pressible in the ground state. Consider, however, a small deviation from the
ground state: σ = σ0 + ε(t), where |ε|/σ0 << 1. Equation (12) then yields
∂2ε
∂t2

= −2ω2
0ε + O(ε2), so that ε(t) = ε0 cos(

√
2ω0t) for O(ε). Hence,

EntS = EntS0 + kB

(
ε

σ0

)
,
1

kB

∂EntS
∂t

= ∇ · ua

= 1

σ0

∂ε

∂t
= −

√
2ω0

σ0
sin(

√
2ω0t) , (14)

implying a reversible sinusoidal variation of the Shannon entropy.
For completeness we note that the action S̃, associated with the density function
of (7), can be found explicitly (up to some constant) using ua = x ∂

∂t ln σ = ∂
∂x S̃

so that S̃ = x2
2

∂ ln σ
∂t + f (t). The time-dependent function f (t), must satisfy the

Hamilton-Jacobi equation (or the time-dependent Bernoulli equation in the fluid
dynamics language [5]), which is the imaginary part of (1) from which (3) is
derived. For the 1D version this equation becomes

∂ S̃

∂t
+ 1

2

(
∂ S̃

∂x

)2

+ Q̃ + Ũ = 0, (15)

yielding f (t) = −( h̄
2m )2

∫ t
t0

dt
σ 2 .

3 The Role of the Bohm Potential in Classical Diffusion

We wish to contrast the temporal evolution of the Madelung fluid’s entropy with
irreversible processes occurring in classical diffusion. Towards this end, we consider
the standard case where the diffusive velocity ud satisfies Fick’s first law:

ud = −D∇ ln ρ. (16)

Here, ud is also referred to as the osmotic velocity [14] with D the diffusion coefficient
(assumed constant for simplicity).

Changes in density result then from diffusive fluxes (rather than advective fluxes
in the hydrodynamic continuity equation of (2)) as stated by Fick’s second law:

123



820 Found Phys (2016) 46:815–824

∂ρ

∂t
= −∇ · (ρud) = D∇2ρ . (17)

Equation (5) still holds when ua is replaced by ud , but its domain integration yields
now:

∂

∂t
(EntS)D = kB

∫
ρ∇ · uddV = kB 〈∇ · ud〉 = kBD

〈
(∇ ln ρ)2

〉
≥ 0, (18)

where Fi = ∫
(∇ρ)2

ρ
dV = 〈

(∇ ln ρ)2
〉
is the Fisher information and (EntS)D

represents the Shannon entropy undergoing a diffusion process. Hence, this well
known relation (e.g. [11], for other information theory contexts) suggests that entropy
increases in diffusive processes through expansion, as in the hydrodynamic case, but in
contrast with the latter, the entropy increases irreversibly with time as long as density
gradients exist (in agreement with the second law of thermodynamics).

Equation (17) can be transformed into a momentum like equation when defining
a “material diffusive derivative” as Dd

Dt ≡ ∂
∂t + ud · ∇. Then it is straightforward to

show that (17) can be translated to

Dd

Dt
ud = ∇ Q̃d , (19)

where Q̃d = −2D2 ∇2√ρ√
ρ

may be denoted as a diffusive Bohm potential. Hence,
the positive gradient (as opposed to the negative sign in (3)) of the diffusive Bohm
potential acts as a “force” to accelerate the diffusion. This appearance of the quantum
Bohm potential in a classical process is intriguing.

The role of the gradient of the Bohm potential as a diffusive force becomes more
transparent when returning to the dynamic 1D Gaussian example. The well known
solution to the 1D version of (17) (e.g., [15]) is given by

ρ(x, t) = 1

σ(t)
√
2π

e
− x2

2σ2(t) , σ 2 = 2Dt, ud(x, t) = −D
∂ ln ρ

∂x
= x

∂ ln σ

∂t
= x

2t
.

(20)

Hence

1

kB

∂

∂t
(EntS)D = ∇ · ud = 1

2t
, (21)

(note that for large t both (11) and (21) experience asymptotic entropy growth which
is proportional to t−1). Since ud = dx

dt = x/(2t) a fluid element located at x0 at time

t0 will be drifted at time t to x =
(

x0√
t0

) √
t (randomwalk). Therefore, ud = x/(2t) =(

x0
2
√
t0

)
/
√
t , and the acceleration of the fluid element is
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d

dt
ud = −

(
x0

√
t√

t0

)
1

4t2
= − x

4t2
, (22)

where d
dt ud ≡ Dd

Dt ud ≡ ∂ud
∂t +ud

∂ud
∂x . Thus, in this example the diffusion rate is being

decelerated by the gradient of the diffusive Bohm potential

Dd

Dt
ud = ∂ Q̃d

∂x
= −2D2 ∂

∂x

( x

σ 2

)2 = − x

4t2
. (23)

4 Representation of Diffusion in the Madelung Fluid

The authors of [5,8,14,16] defined the complex velocity derived from the momentum
operator −i h̄∇�, as

v =
[
−i

h̄

m
∇ ln�

]
= vr + ivi , (24)

so that vr = ua = ∇ S̃ is the advective velocity and vi = − h̄
2m∇(ln ρ). One may

interpret vi = ud , as in (16), suggesting the relation between the Planck constant
and the diffusion coefficient to be h̄

2 = mD, so that Qd becomes identical to the
quantum Bohm potential. For the simplest case of the Einstein relations in an ideal
gas,mD = (l · p̄)/3, where |l| is the molecular mean free path and |p̄| is the magnitude
averaged thermal (randomwalk)molecularmomentum in-between collisions. Isotropy
results in the relation h̄

2 = lx px , and indeed lx and px are the basic scales obtained
from statistical mechanics for deriving the kinetic theory of gases. In other words,
one cannot resolve the ideal gas dynamics within length scales smaller than lx or for
momenta smaller than px . As pointed out by [17,18], it is intriguing that these two
fundamental scales form the canonical variables which set the exact limiting case of
the Heisenberg uncertainty principle.

Finally, incorporating (2) with (16) we obtain the Fokker–Planck equation

∂ρ

∂t
+ ∇ · [ρ(ua − ud)] =

(
h̄

2m

)
∇2ρ, (25)

which corresponds to the entropy equation

∂s

∂t
+ ∇ · [(s − ρ)ua] =

(
h̄

2m

)−1

ρua · ud , (26)

yielding

∂

∂t
EntS =

(
h̄

2m

)−1

kB 〈ua · ud〉 , (27)

thus stating that positive entropy production in the Madelung fluid occurs when the
advective and the diffusive velocities are positively correlated within the fluid domain.
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5 Summary and Discussion

The Madelung formulation suggests relations between classical hydrodynamic and
thermodynamic with quantum mechanics. In Ref. [5], two of us highlighted the role
of compressibility in theMadelung fluid, where in the current workwe examine further
the Shannon entropy production within the Madelung formulation and find that it is
proportional to the expectation value of ∇ · ua . Thus, the expansion of the fluid is
equivalent to an entropy increase. Furthermore, we note that interference between
plane waves leads to an increase of entropy, but it also renders the Madelung fluid
compressible, allowing it to expand. Putting all of the pieces together, we find that a
simple link exists between the interference of wave functions, compressibility of the
Madelung fluid, and Shannon entropy production.

The Madelung fluid expansion suggests an analogy with diffusive processes such
as a free Joule expansion. Ref. [5] related the imaginary part of the quantum velocity
to the thermal fluctuations of the Madelung fluid. Following the current analysis, this
imaginary part can indeed be interpreted, as a diffusive drift (or osmotic) velocity,
since its flux is propositional to the minus sign of the density gradient (as in Fick’s
first law). Furthermore, this analogy suggests that the diffusion coefficient is h̄/2m,
and for the simplest model of diffusion in ideal gas, the relation between the diffusion
coefficient, the mean free path, and Brownian momentum provides the lower bound
of the Heisenberg uncertainty relation.

The entropy production can be expressed as well in terms of the correlation’s
expectation value between the advective and diffusive velocities. Moreover, for clas-
sical diffusive processes, it was shown that the gradient of the Bohm potential acts as
a force to accelerate the diffusion. This appearance of the quantum potential in a clas-
sical process may shed light on its role in the Schrödinger equation. It is important to
remember however, that in the quantumcase the diffusion equation, governed byFick’s

second law, cannot be extracted from theSchrödinger equation, i.e., ∂ρ
∂t �= (h̄/2m)∇2ρ,

but rather ∂ρ
∂t = −∇ · (ρua). Therefore, processes associated with density variation,

such as entropy growth, are due to expansion by the hydrodynamical advective velocity
and not by diffusive irreversible processes.
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Grant No. DMR 1411229.

Appendix

Assuming that the phase space density function, ρph(r,p, t), in equilibrium can be
separated into coordinate and momentum parts, ρph(r,p, t) ≡ ρ(r, t)χ(p, t), then
the Boltzmann entropy becomes

EntB = −kB

∫ ∫
ρph ln ρphdrdp = EntS − kB

∫
χ ln χdp. (28)
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Under the de Broglie-Bohm interpretation, the particle’s momentum is p = ∇S(r, t),
so that χ = δ(p−∇S). As seen from the two terms on the right-hand side of Eq. (28),
the Boltzmann entropy is the sum of (i) the entropy EntS associated with the spatial
probability distribution (ρ) and (ii) a (formally divergent) entropy associated with the
momentum probability distribution χ ,

EntB = EntS − kB ln δ(0). (29)

The divergent contribution in the RHS of Eq. (29) results from the (unbounded) sin-
gular Dirac’s delta distribution for the momentum. In a discrete rendition of χ (i.e.,
making it a Kronecker delta), this Dirac delta distribution will be replaced by a value
of unity when the condition p = ∇S is satisfied, i.e., there is no entropic uncertainty
associated with the momentum. Consequently, such a discrete probabilistic rendi-
tion will lead to no difference between EntB and EntS . Thus, within the continuum
framework that we work in, the singular term in Eq. (29) is an outgrowth of the fact
that within the Bohmian interpretation (which indeed differs from the Madelung one
[4,7]) the variance of the continuum momentum distribution vanishes, equivalent to
an assumption of zero temperature of the Madelung fluid. If, however, one interprets
the de Broglie guiding equation (p = ∇S) only as a mean (hydrodynamic) motion,
then the Madelung fluid has a non zero temperature that is proportional to the Fisher
information [5], and the Boltzmann entropy in (28) will, generally, not be singular.
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