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ABSTRACT: Pseudoenergy serves as a non-canonical Eulerian Hamiltonian of linearized shear flow systems. It is non-
canonical in the sense that the canonical Hamilton equations cannot be written when the dynamical variable is taken as the
(potential) vorticity. Here we apply the counter-propagating Rossby wave kernel (KRW) perspective to obtain a compact
form of the pseudoenergy as a domain integral of the local KRW pseudomomentum carried by the instantaneous KRW
phase speed in the mean flow frame of reference. Written this way, with the generalized momenta taken as the KRW
pseudomomenta and the generalized coordinates as the instantaneous KRW locations, canonical Hamilton equations can
be derived both in their continuous (using functional derivatives) and discrete (using function derivatives) forms.

As a simple example of the insight such a formulation can yield, we reexamine the classical stability transition from
Rayleigh to Couette flow. In this transition the instability is lost even though the classical necessary conditions of Fjørtoft
and Rayleigh are still satisfied. The pseudoenergy-KRW formulation allows to interpret the stabilization both as an inability
of the KRWs to phase lock constructively, and in terms of the pseudoenergy becoming negative. These two apparent different
rationalizations are shown to be essentially one and the same. Copyright c© 2009 Royal Meteorological Society
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1. Introduction

It is common practice in many physical disciplines, to
try to describe conserved dynamical systems in a canon-
ical Hamiltonian form (e.g. Goldstein, 1969; Peskin and
Schroede, 1995). The generalized momenta and coordi-
nates of the canonical representation are considered to be
the natural physical framework to describe the system.
In geophysical fluid dynamics, such a representation is
possible in a particle-following Lagrangian framework,
where the Hamiltonian is the total integrated energy of
all the fluid particles, and the particles’ positions and
velocities are the generalized coordinates and momenta.
Since a Lagrangian framework is usually too complex
for practical use, much effort in developing a Hamilto-
nian geophysical fluid dynamics theory has been directed
towards its representation in the simpler Eulerian frame-
work. However, in the transition to the Eulerian frame-
work, the phase space is degenerated due to the inherent
‘particle-relabelling symmetry’ along surfaces of constant
(potential) vorticity (hereafter generally PV), which is
Lagrangianly conserved (e.g. Shepherd, 1990; Salmon,
1988). Under this symmetry, the Hamiltonian becomes
invariant under translation of fluid particles along PV sur-
faces. This reduction in phase space prevents a canonical
representation of the dynamics in the Eulerian frame-
work, so that only a non-canonical representation can
be obtained (Shepherd, 1990; Salmon, 1988; Chapter 7
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of Salmon 1998 gives a comprehensive review of non-
canonical Hamiltonian fluid dynamics). In this paper, we
will show that, for linear dynamics, we can nonetheless
reformulate the Hamilton equations in a canonical form,
by using a counter-propagating Rossby wave perspective.

Shear flows with basic states that are constant in time
and in the zonal direction conserve both pseudoenergy
and pseudomomentum, which are exact wave activity
invariants of the nonlinear dynamics (they are defined
up to the Casimirs of the flow which can be the integrals
of any function of the PV). For the linearized dynamics,
the pseudoenergy can be shown to become the non-
canonical Hamiltonian, whereas the pseudomomentum
becomes a conserved Noether current. In the context of
linear instability, the conservation of pseudomomentum
and pseudoenergy yield the two necessary conditions
for modal shear instability – the Rayleigh (1880) and
Fjørtoft (1950) conditions, respectively. A mechanistic
interpretation of these conditions is obtained in terms
of a mutual interaction of two oppositely propagating
Rossby waves, which phase lock and reinforce each other
in the presence of shear, due to the action-at-a-distance
nature of PV anomalies (e.g. Hoskins et al., 1985; Heifetz
et al., 2004a,b). This is best illustrated for the simple case
where the mean flow PV gradients are concentrated in two
localized regions, each supporting a Rossby wave which
propagates to the left of the local mean PV gradient.
Though the waves are PV localized, each induces a
non-local velocity field which affects the other wave by
advecting the mean PV gradient. The Rayleigh condition
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– that the mean PV gradient changes sign between the
two jumps – enables the two Rossby waves to align in a
way in which they interact constructively to yield mutual
instantaneous amplification. When the Fjørtoft condition
is satisfied – that the mean PV gradient is globally
positively correlated with the mean wind – the waves
propagate counter the local mean wind (hence denoted
by Bretherton (1966) as ‘counter-propagating Rossby
wave’, CRW). In a shear flow, such a counter-propagation
will reduce the relative phase speed between the two.
Under the right conditions, the CRW interaction will
allow a phase-locked coherent propagation in a mutually
reinforcing configuration, leading to modal growth.

Heifetz and Methven (2005) generalized this two-
wave interaction formulation to one based on a multiple
interaction of an infinite number of localized Rossby
wave ‘kernels’ (referred to, hereafter, as a kernel Rossby
wave, KRW), each propagating on its local PV gradient,
and inducing a non-local velocity field which affects all
other kernels. Thus, each KRW changes its amplitude
and phase due to advection of the mean PV in its own
layer, where the advecting velocity is attributable to all
other kernels. The growth, propagation and interaction
mechanism are the same as for the two-wave example
mentioned above, except that here each KRW affects, and
is being affected by, an infinite number of other kernels.

Formulating the PV evolution in terms of a two-CRW
interaction, Heifetz et al. (2004a) also obtained a pair of
canonical equations, in which pseudoenergy is the Hamil-
tonian, and the CRW positions and pseudomomentum are
the generalized coordinates and momenta respectively. In
this paper, we wish to generalize this two-wave canonical
formulation to the more general multiple KRW system,
and to make use of the mechanistic understanding that
the KRW framework provides to better understand the
Hamiltonian perspective. By choosing the generalized
coordinates to be the KRWs’ positions, and the gener-
alized momenta to be the local contribution of the KRWs
to the pseudomomentum, pseudoenergy obtains a com-
pact form from which the canonical Hamilton equations
are derived.

We present the mathematical formulation in section 2,
and then (in section 3) apply it to understand why modal
instability can be lost even when the two necessary
conditions for instability of Rayleigh and Fjørtoft are
satisfied. We consider one of the simplest cases of
a stability transition – that of a single shear layer
bounded by approaching boundaries. At the vicinity of the
transition zone, both the conditions are satisfied however
as the boundaries become too close to the shear layer, the
pseudoenergy integral becomes negative, and instability
is lost. The KRW–Hamiltonian formulation allows us
to interpret the stabilization both as an inability of the
KRWs to phase lock in a growing configuration, and as
a decrease of the KRW energy–enstrophy ratio, which
yields a negative pseudoenergy. Thus, the two seemingly
different rationalizations, KRW phase-locking and the
vanishing of the pseudoenergy constraint, are essentially
one and the same. We conclude with a short discussion
in section 4.

2. Canonical KRW Hamilton equations

2.1. KRW equations

In this section we present the linear dynamical equations
in terms of the amplitude and phase of a set of KRWs,
which are mutually interacting. We consider a basic
shear zonal flow U whose perturbation is assumed to be
described by the linearized horizontal advection of PV:(

∂

∂t
+ U

∂

∂x

)
q ′ = −v′qy , (1)

where q ′ is the perturbation PV, qy is the mean merid-
ional PV gradient and v′ is the perturbation merid-
ional velocity. This equation can be applied when the
PV is either the Ertel–Rossby one evaluated on isen-
tropic surfaces or the quasi-geostrophic PV on horizontal
surfaces, or to barotropic instability on horizontal sur-
faces where the PV becomes the vorticity. Here, for
the sake of simple demonstration, we refer to the lat-
ter case where both U and qy are functions of y only
and q ′ = (∂v′/∂x) − (∂u′/∂y). We apply a zonal Fourier
decomposition on the perturbation

q ′(x, y, t) =
∫ ∞

k=0
qk(y, t)eikx dk , (2a)

v′(x, y, t) = −i
∫ ∞

k=0
vk(y, t)eikx dk , (2b)

(the –i on the RHS of (2b) indicates that a positive PV
anomaly induces positive meridional velocity a quarter
of wavelength to the east of it) and assume that if
Ly[vk(y, t)] = qk(y, t), then by inversion

vk(y, t) =
∫ ymax

y′=ymin

qk(y
′, t)G(y, y′) dy′, (3)

where G(y, y′) is the positive definite Green function
satisfying Ly[G(y, y′)] = δ(y − y′) and the associated
boundary conditions at y = (ymin; ymax). Writing the PV
perturbation in terms of amplitude and phase, qk(y, t) =
Qk(y, t)eiεk(y,t), substituting into (1) using (2) and (3),
and taking the real and imaginary parts of (1) we get

Q̇(y) = qy(y)

∫ ymax

y′=ymin

Q(y′)G(y, y′) sin [ε(y, y′)]dy′,

(4a)

ε̇(y) = −kU(y)

+ qy(y)

Q(y)

∫ ymax

y′=ymin

Q(y′)G(y, y′) cos [ε(y, y′)] dy′,

(4b)

where the subscript k has been dropped and ε(y, y′) ≡
ε(y) − ε(y′). Here we refer only to the cases where PV
anomalies result solely from mean PV advection, so that
(4b) is not singular in regions where qy(y) = 0, since
q(y) also vanishes there. As described in Heifetz and
Methven (2005), these equations can be considered as
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the continuous generalization of the CRW-pair equations
described in Heifetz et al. (2004a). Equation pair (4)
indicates that each KRW changes its amplitude and phase
due to meridional advection of the mean PV in its
own layer, where the meridional velocity is attributable
to all other kernels and attenuated according to the
Green function G(y, y′) and the relative phase ε(y, y′).
Hence, the mechanism of amplitude growth and counter-
propagation is the same as for a CRW pair, except that
here each KRW affects, and is being affected by, an
infinite number of other kernels.

2.2. KRW representation of pseudoenergy and pseudo-
momentum

The KRW formulation allows us to obtain a compact
expression for the pseudoenergy integral. We first write
the domain-averaged energy E in terms of vk and q, for
a given wavelength λ = 2π/k, and width D = (ymax −
ymin):

E =
〈vkq

2k

〉
= 1

λD

∫ x=λ

x=0

∫ ymax

y=ymin

1

4k
Re(v∗

k q) dxdy. (5)

Substituting (3) into (5) yields:

E = 1

4kD

∫ ∫ ymax

y′=ymin

Q(y)Q(y′)G(y, y′)

cos [ε(y, y′)] dy′dy. (6)

Taking the time derivative of E, using (4) to express the
time derivative of Q and ε, we get after some algebra:

Ė = 1

4D

∫ ∫ ymax

y′=ymin

Q(y)Q(y′)G(y, y′)

× sin[ε(y, y′)] [U(y)−U(y′)] dy′dy.

(7a)

As indicated in Harnik and Heifetz (2007), the absence of
the mean PV gradient from the energy growth expression
results from an exact cancellation by two opposing effects
of the mean PV advection on the energy growth. When
the KRW action-at-a-distance interaction acts to increase
the enstrophy (the KRW amplitudes), it also acts to
weaken the correlation between vk and q (by increasing
the phase between the KRWs) and vice versa. As is
evident from the RHS, only in the presence of shear and
when the KRW are tilted against it (i.e. the correlation
between sin [ε(y, y′)] and [U(y) − U(y′)] is positive),
we get energy growth. This was referred to by Harnik
and Heifetz as the CRW perspective of the Orr (1907)
mechanism.

Flipping the dummy variables (y, y′) in the RHS
of (7a), taking into account that G(y, y′) = G(y′, y)

and sin [ε(y, y′)] = − sin [ε(y′, y)], yields then a simpler
expression for the energy tendency:

Ė = 1

2D

∫ ∫ ymax

y′=ymin

Q(y)Q(y′)G(y, y′)

sin[ε(y, y′)]U(y) dy′dy. (7b)

The time-invariant pseudoenergy integral is H ≡ E + S,
where

S =
〈
− U(y)

qy(y)

q2

2

〉
= − 1

4D

∫ ymax

y=ymin

U(y)

qy(y)
Q2(y) dy.

(8)

H is indeed conserved with time, as can be verified by
taking the time derivative of S, using (4a) and comparing
it with (7b). Then writing H in terms of (6) and (8), using
(4b) to express the integral over y′ in (6), we obtain

H = 1

4D

∫ ymax

y=ymin

Q2(y)

qy(y)

ε̇(y)

k
dy

= 1

4D

∫ ymax

y=ymin

Q2(y)

qy(y)
χ̇(y) dy = const ,

(9)

where χ(y) ≡ ε(y)/k is defined as the ‘KRW location’.
(9) can be related to the time-independent pseudomomen-
tum integral (P ):

P =
〈

q2

2qy(y)

〉
= 1

4D

∫ ymax

y=ymin

Q2(y)

qy(y)
dy

=
∫ ymax

y=ymin

p(y) dy , (10)

where we have defined p(y) ≡ Q2(y)/4Dqy(y) to be
the pseudomomentum density of the local (in y) KRW
contribution to the pseudomomentum integral P . We note
that while P is conserved in time†, p(y) is generally
not. Using this definition of the localized contribution to
pseudomomentum yields the compact expression for the
pseudoenergy integral:

H =
∫ ymax

y=ymin

p(y, t) χ̇ (y, t) dy . (11)

We see that pseudoenergy is an integral over minus
the product of local instantaneous pseudomomentum
and local instantaneous phase speed. This relation sug-
gests the definition of pseudoenergy density, h(y, t) ≡
p(y, t)χ̇ (y, t). An elegant interpretation of the local pseu-
domomentum is the amount of PV flux which crossed
the local latitude line over the lifetime of the pertur-
bation (Held, 2000), which is essentially the amount of
PV-material ‘stored’ in the local KRW. Thus, the local
pseudoenergy is minus an instantaneous zonal flux of

†The conservation of P , which stems from the domain-integrated PV
flux vanishing, can be obtained directly from the KRW formulation
when multiplying (4a) by Q(y)/qy(y) and integrating by y to obtain

Ṗ = 1

4D

∫ ∫ ymax

y′=ymin

Q(y)Q(y′)G(y, y ′) sin [ε(y, y′)] dy′dy .

The RHS vanishes immediately when flipping the dummy variables
(y, y′). Essentially this results from the symmetry in the interaction
(represented by G(y, y′)) between each KRW pair – the PV fluxes
induced by the meridional flow of one kernel on the other are equal
and oppositely signed.
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‘stored’ KRW PV, carried by the wave in a frame of
rest‡. For the case of normal modes, for which by def-
inition χ̇ = cnm =const, (11) reduces to Equation (2.18)
of Held (1985). Moreover, the pseudoenergy condition
for normal mode instability – that it has to vanish – is
trivially obtained in this case.

2.3. Canonical Hamiltonian KRW equations

A continuous system in the general form of (11), i.e.

H =
∫ ymax

y=ymin

h[p(y, t), χ(y, t)] dy = const , (12)

where p and χ are the continuous generalized momenta
and coordinates§, is considered canonical if

δH
δp

= χ̇ ; δH
δχ

= −ṗ , (13a,b)

where the functional derivative δF/δf is defined for
infinitesimal variation δ by (e.g. Salmon, 1998)

δF[f (y)] ≡ F[f + δf ] − F[f ]

≡
∫ ymax

y=ymin

δF
δf (y′)

δf (y′) dy′. (14)

Alternatively, applying the Poisson bracket formulation

{F, G} ≡
∫ ymax

y=ymin

[
δF

δχ(y′)
δG

δp(y′)
− δF

δp(y′)
δG

δχ(y′)

]
dy′,

(15)

the Hamilton equations become

{χ,H} = χ̇ ; {p,H} = ṗ . (16a,b)

Using these definitions, it is straightforward to verify that
H satisfies (13a) and (16a). (13b) or (16b) are obtained
after some algebra when (4b) is substituted into (11) and
(14) and (15) are applied¶.

The fact that (13) or (16) are the KRW amplitude and
phase evolution equations suggests, along with expres-
sion (11), that the amplitude–phase evolution and phase
locking are at the heart of basic conserved quantities like
pseudomomentum and pseudoenergy. In the next section
we show this explicitly, using a classic problem in which
a stability transition occurs even when the classical nec-
essary conditions of Fjørtoft (1953) and Rayleigh (1880)
are still satisfied.

‡A similar minus sign issue arises for the definition of pseudomomen-
tum. Andrews and McIntyre (1976) defined the pseudomomentum as
−p (minus the amount of PV material which flows through a latitude
circle). In their definition, a wave carrying positive pseudomomentum
will accelerate the zonal mean flow once this pseudomomentum is
deposited in it.
§We avoid the standard notation of q for the generalized coordinate,
since the latter denotes PV.
¶Note however that this Hamiltonian is different from the familiar
canonical continuous representation,

H =
∫

p(y)χ̇(y) dy − L(χ, χ̇, y, t),

where the Lagrangian L satisfies δL/δχ̇ = p. L cannot be properly
defined since the KRW equation set (4) does not provide a Legendre
transformation from the basis (χ, χ̇) to (χ, p). Hence, this system has
no direct translation to the Euler–Lagrange formulation.

3. The transition from Rayleigh to Couette flow

We consider one of the simplest set-ups for which the
Rayleigh and Fjortoft conditions are met: a 2D, inviscid,
incompressible shear layer, bounded by two finite regions
of constant flow (Figure 1(a)). We denote the shear layer
boundary location as y = ±b, and the wall locations
at y = ±a, with a varying from infinity to b. In this
set-up, the mean meridional vorticity gradient, which is
independent of a, is simply a positive delta function at
the northern edge of the shear layer, and a negative one
at the southern edge (Heifetz et al., 1999, give details
of the infinite domain set-up) dynamics. Since the PV
gradient is concentrated into two δ functions, there is not
a distinction between the globally defined CRWs, and
the localized KRWs – both are the two localized PV δ

functions. Thus we will use the term CRW (in line with
traditional discussions of this problem), but the analysis
also applies to KRWs.

The location of the boundaries strongly affects the
stability of the system (e.g. Drazin, 2002), as can be
discerned from considering the two extremes. When
the boundaries are located at y → ±∞, the unstable
Rayleigh shear layer is obtained. When the boundaries

Figure 1. (a) Schematic illustration of the transition of the Rayleigh
problem to the plane Couette one. When the boundaries at y = ±a
go to ±∞, the Rayleigh problem is obtained while, where a = b, the
Couette problem is obtained. (y = ±b are the edges of the shear layer.)
(b) The growth rate, normalized by the shear �, as a function of the
normalized wavenumber K = 2kb, for different values of the ratio a/b.
Where a/b >> 1, the Rayleigh problem limit is obtained whereas, when
a/b = 2, the instability disappears. This figure is available in colour

online at www.interscience.wiley.com/journal/qj
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are located exactly at the edges of the shear layer, stable
Couette flow is established. In between, as the boundaries
approach monotonically from ±∞ to the edges of the
shear layer, the instability is gradually reduced, and it
disappears when the boundaries reach a distance from
the shear layer which equals half the shear layer width.
Figure 1(b) shows the normal mode growth rates for this
transition. As the boundaries approach the shear layer, the
growth rate gradually decreases and the short-wave cut-
off, as well as the most unstable mode, are both shifted
to smaller wavenumbers.

The most direct effect of the boundaries is through
the requirement that the meridional velocity vanish there.
When the boundaries are close enough, this strongly
reduces the meridional velocity induced by a PV kernel.
Physically, this can be understood from the electric charge
mirror imaging analogy for PV (Thorpe and Bishop,
1995) – an anti-phased CRW mirror image should be
placed at the opposite side of the boundary to cancel the
meridional velocity there‖.

Mathematically, this is expressed in the Green function
for this set-up:

G(y, y′)= 1

sin h(2ka)


sin h[k(a + y′)] sin h[k(a − y)]

for y′ ≤ y < a ,

sin h[k(a − y′)] sin h[k(a + y)]
for −a < y ≤ y′.

(17)

In the Rayleigh limit (a → ∞), G(y, ±b) reduces to
the open flow form (e−k|y∓b|/2) while in the Couette limit
(a → b), G(y, ±b) vanishes. This is consistent with the
PV gradient vanishing in this problem, thus there are no
CRW kernels.

Note that, since there are only two KRWs in this
problem (at y = ±b), we only need to consider the Green
functions at these locations. There are thus only two
types of Green function – ‘self’ (Gs = G(±b, ±b)) and
‘induced’ (Gi = G(±b, ∓b)). Gs affects the self counter-
propagation rate whereas Gi affects the strength of CRW
interaction. Both of these are reduced as the boundaries
approach the shear layer, which explains the loss of
instability.∗∗

The loss of instability can also be understood from
the perspective of pseudoenergy conservation. McIntyre
and Shepherd (1987) discussed generally how, due to the
nature of the inversion of PV, decreasing the domain
size reduces the domain-integrated energy contribution
E, relative to the domain-integrated enstrophy |S|. Since
for modal instability any conserved quantity involving
the eddies must vanish, H = 0 implies E = |S|. If E

becomes too small, as the boundaries become too close,
the pseudoenergy becomes negative definite and modal

‖When two boundaries exist, an infinite series of mirror images is
actually needed to cancel the velocity at both boundaries, but the
leading-order effect is accounted for by a single mirror image.
∗∗McIntyre (2005) actually alludes to this by noting that ‘the Rossby-
wave propagation mechanism does not have room to operate suffi-
ciently strongly to hold a phase-locked configuration’, in the presence
of close boundaries.

instability is ruled out regardless of whether the Rayleigh
and Fjørtoft conditions are met.

The Hamiltonian–KRW formulation of the previous
section allows us to tie these two approaches to the
problem together. To do this, we apply the discrete KRW
version suitable to the case where the basic state is
discretized to a PV staircase (cf. Appendix). Using (A.4)
the two parts of the pseudoenergy H = E + S in terms
of the two CRWS become:

E = 1

8ak

{
(Q̂2

+b + Q̂2
−b)Gs + 2Q̂+bQ̂−bGi cos ε

}
,

(18a)

S =− b

8a

{
Q̂2

+b + Q̂2
−b

}
, (18b)

where ε ≡ ε+b − ε−b.
For this simple symmetric set-up, modal growth is

obtained when Q̂+b = Q̂−b ≡ Q̂. Under this condition,
the ratio between the energy and the absolute value of
the enstrophy term is:

E

|S| = 1

kb
(Gs + Gi cos ε) . (19)

When the boundaries approach the shear layer, this
ratio vanishes, due to the Green function vanishing. The
pseudoenergy condition for normal mode instability, that
H = 0 (E/|S| = 1) yields:

cos ε = kb − Gs

Gi

. (20)

It is easy to verify, using (A.2b) for this set-up, that this
is exactly the condition for phase locking (ε̇ = 0). Hence,
the condition H = 0 yields the condition for unstable
modal phase locking.

We can obtain a physical picture of the effect of
the approaching boundaries on the decrease of E by
examining how the velocity fields of the two CRWs
superpose (i.e. v(y) = v(y, b) + v(y, −b)):

E = 1

2

〈[
ub(y) + u−b(y)

]2 + [
vb(y) + v−b(y)

]2
〉
. (21)

For a given non-dimensional wavenumber kb, the
energy–enstrophy ratio of (19) is maximized when ε = 0.
This is due to the energy being maximized when the
two CRWs are exactly in phase (Figure 2). Instability
is allowed as long as Emax > |S|, and the stability cut-off
(Figure 1(b)) occurs when E = Emax = |S|.

Looking at the CRW configuration for Emax, shown in
Figure 2, we see that the meridional velocities superpose
constructively in the entire domain. The zonal perturba-
tion velocities, however, superpose constructively outside
the shear layer, and superpose destructively inside it.
Thus, when the outer region shrinks, the superposition
of u tends to decrease the integrated value of u2, and the
overall energy integral becomes too small to match the
enstrophy term. Consequently H becomes negative and
the instability is lost.
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+-- --

+-- -- y=-b

y=b

y=-a

y=a
U

Figure 2. Schematic illustration of the CRW configuration for Emax. The
velocity fields induced by the CRW at the northern and southern shear
edges are represented by the solid and dashed arrows, respectively.
While the meridional velocities superpose constructively in the entire
domain, the zonal perturbation velocities superpose constructively
outside the shear layer (a > y > b, and −b > y > −a), and superpose

destructively inside it (b > y > −b).

4. Conclusions

Geophysical shear flows that Lagrangianly conserve PV
can be often presented as non-canonical Eulerian Hamil-
tonian systems (e.g. Shepherd, 1990). They are non-
canonical in the sense that, although a Hamiltonian can
be well defined, the Hamilton equations cannot be written
in their canonical form. Here, in a much more mod-
est attempt, pertaining to linear shear flow dynamics,
by taking advantage of the fact that laminar shear sets
a preferred direction in the flow, we manage to write
the canonical Hamilton equations in terms of multiple
action-at-a-distance interactions between localized PV
anomalies, propagating as Rossby waves. This formu-
lation however is peculiar in the sense that, while the
canonical Hamilton equations can be derived (both in
a continuous and discrete forms), a proper Lagrangian
cannot be defined due to the lack of a proper Legendre
transformation. The resulting kernel Rossby wave (KRW)
formulation leads to a very compact form of the pseu-
doenergy – as the product of pseudomomentum and the
local instantaneous disturbance phase speed. This relation
has been noted before for normal modes (Held, 1985), but
we show here that it holds locally and instantaneously,
and therefore can be applied also to non-modal transient
growth.

As an example of the insight such a formulation can
yield, we revisited the classical stability transition from
Rayleigh to Couette flow. In this problem, the loss of
normal mode instability occurs when the pseudoenergy
integral becomes negative, even though the Rayleigh
and Fjørtoft necessary conditions for instability are still
satisfied. The KRW formulation explicitly shows that
pseudoenergy is maximized when the flow is marginally
stable. This is a kinematic action-at-a-distance effect –
when all KRWs are in phase the ratio of eddy energy to
eddy enstrophy is maximized. At the same time, when

the KRWs are in phase, they fully help each other to
maintain phase locking against the shear. The vanishing
of pseudoenergy occurs when the ability of the KRWs
to phase lock in a mutually growing configuration is
lost due to a significant weakening of the action-at-
a-distance by the approaching boundaries. This occurs
because the constraint of vanishing flow at the boundaries
considerably weakens the meridional flow which a given
PV kernel induces. Since the KRW description is general
to shear flows, we expect the conclusions from this simple
problem of the relation between pseudoenergy and phase
locking to hold for more complex shear instability set-
ups.

Since pseudoenergy is an exact invariant for finite
amplitude perturbations dynamics, this suggests the KRW
formulation might be extendable to finite amplitude (as
seems to be the case for nonlinear eddy life cycles, cf.
Methven et al., 2005). We are currently investigating this
possibility in a semi-Lagrangian perspective.
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Appendix

Discrete canonical Hamiltonian KRW formulation

Discretizing the basic state to a piecewise PV staircase
(with arbitrarily small but finite jumps):

qy(yn) = (�q)nδ(y − yn) , (A.1)

where n = 1, 2, ..., N is the number of PV jumps and
(�q)n = qn+1 − qn is the difference of the mean PV
across the jump n. From (1) it is clear that the PV
perturbations are also concentrated as δ-functions on the
mean PV interfaces, i.e.

qk(yn, t)=Q̂k(y, t)eiεk(y,t)δ(y − yn) ≡ Q̂neiεnδ(y − yn).

For such discretization, equation set (4) can be rewritten
as:

˙̂Qn = (�q)n

N∑
j=1

Q̂jG(yn, yj ) sin [ε(yn, yj )] ,

(A.2a)

ε̇n =−kU(yn) + (�q)n

Q̂n

N∑
j=1

Q̂jG(yn, yj ) cos [ε(yn, yj )] ,

(A.2b)
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and the pseudomomentum takes the form:

P = 1

4D

N∑
n=1

Q̂2
n

(�q)n
≡

N∑
n=1

p̂n . (A.3)

Using (6), (8), (11) and (A.3), the pseudoenergy becomes:

H = E + S

= 1

4Dk

N∑
l=1

N∑
m=1

Q̂lQ̂mG(yl, ym) cos [ε(yl, ym)]

+
N∑

n=1

−U(yn)p̂n (A.4)

=
N∑

n=1

p̂nχ̇n .

We can now take the derivative of H with respect to χn

and p̂n. Using equation set (A.2) and recalling that p̂n =
Q̂2

n/{4D(�q)n}, and that the derivation of quantities of
index n have cross-term contributions from the multiple
summations when l = m = n, we get the discrete version
of (13a,b):

∂H

∂χn

= − ˙̂pn ; ∂H

∂p̂n

= χ̇n . (A.5a,b)

Applying the discrete Poisson bracket formulation:

{F,G} ≡
N∑

n=1

(
∂F
∂χ

∂G
∂p̂n

− ∂F
∂p̂n

∂G
∂χn

)
, (A.6)

we obtain the discrete version of (16a,b):

{χn, H } = χ̇n ; {pn,H } = ṗn . (A.7a,b)
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