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On the equilibration of asymmetric barotropic instability
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The conjunction of turbulence, waves and zonal jets in geophysical flows gives rise to the
formation of potential vorticity staircases and to the sharpening of jets by eddies. The effect of
eddies on jet structure, however, is fundamentally different if the eddies arise from barotropic
rather than from baroclinic instability. As is well known, barotropic instability may occur
on zonal jets when there is a reversal of potential vorticity gradients at the jet flanks. In
this article we focus on the nonlinear stages of this instability and its eventual saturation.
We consider an idealized initial state consisting of an anticyclonic potential vorticity strip
sitting in the flanks of an eastward jet. This asymmetric configuration, a generalization of the
Rayleigh problem, is one of the simplest barotropic jet configurations which incorporates
many fundamental aspects of real flows, including linear instability and its equilibration,
nonlinear interactions, scale cascades, vortex dynamics, and jet sharpening. We make use
of the simplicity of the problem to conduct an extensive parameter sweep, and develop a
theory relating the properties of the equilibrated flow to the initial flow state by considering
the marginal stability limit, together with conservation of circulation and wave activity.
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1. Introduction

Complex interrelations between turbulence, waves and zonal jets
shape the flow in the atmosphere, the oceans and in other
planetary atmospheres. Turbulent motions horizontally mix
potential vorticity (PV), and when wave motions exist, such as
Rossby waves on a meridional gradient of the background PV, they
organize the fluid motions at the wave scale, limiting the upscale
cascade of energy occurring in homogeneous turbulence (e.g
Rhines, 1975). An inherent feature of rotating turbulent flows
is the spontaneous emergence of jets (Rhines, 1975; McIntyre,
1994). For Rossby waves, the meridional momentum flux is
directed opposite to the direction of meridional wave activity
propagation (Eliassen and Palm, 1961). Thus, waves which are
generated at a certain latitude will flux momentum into that
region when they propagate away, inducing a jet at that latitude.
At the same time, when eddies are forced in the presence of a
pre-existing barotropic jet (e.g. by small-scale turbulence), the
shearing of the eddies by the mean flow tilts the eddies with
the shear, resulting in a momentum flux convergence pattern
which tends to sharpen the jet (e.g. Dritschel and Scott, 2010).
This leads to a positive feedback and allows jets to dominate the
statistically equilibrated state. At the jet flanks, the eddies tend
to mix PV, leading to the formation of a PV staircase–regions
of approximately constant PV, separated by sharp gradients at

which the jets are located (Dritschel and McIntyre, 2008; Scott
and Dritschel, 2012).

During this process of the jet enhancement, the eddies get
sheared by the flow, leading to a decrease in eddy kinetic
energy (EKE). Thus, to maintain a statistically steady state, the
eddies need to be forced. Common eddy forcing mechanisms
discussed in the literature are baroclinic instability in the
Earth’s atmosphere (e.g. Panetta, 1993) and deep convection
in Jupiter (Rogers, 1995; Ingersoll et al., 2004). While baroclinic
instability is the main source of atmospheric disturbances, there is
some evidence that barotropic instability also plays an important
role, e.g. in ITCZ breakdown (Ferreira and Schubert, 1997),
in mixing within critical layers (Haynes, 1985, 1989) and, as
suggested more recently, in compensating for the localized forcing
of the zonal flow by gravity waves in the stratosphere (Cohen
et al., 2013). Moreover, it is also possible that during the flow
evolution, weak forcing may cause negative meridional gradients
of PV to form at the jet flanks, allowing for barotropic instability to
develop between the jet centre and its flanks. Since barotropically
unstable growing waves are tilted against the meridional shear,
they alone act to weaken and broaden the jet, rather than
sharpen it.

In the present work, we specifically examine an unforced,
barotropically unstable flow, studying in detail how instability
affects the evolution of jets and determines their final equilibrated
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form. To this end, we examine the evolution of a uniform
anticyclonic PV strip adjacent to a PV staircase on a barotropic
β-plane (Figure 1(a)). This is a modified Rayleigh–Kuo
problem (Rayleigh, 1880; Kuo, 1949), in which the positive
PV jump is divided into two steps, and the sum of these two
positive jumps is larger than the negative jump. The negative
(anticyclonic) PV anomaly subsequently breaks up into a street
of negative vortices but, unlike the symmetric Rayleigh problem
(in which the positive and negative PV jumps are of the same
magnitude), a positive PV jump remains, on which waves evolve.
As we will show, this highly simplified problem is nevertheless
very rich, and allows us to study the fundamental and complex
interrelation between the mean flow, Rossby waves and vortices.
Moreover, separating the positive PV jump into two steps allows
us to also examine the process of jet sharpening.

The choice of a piecewise-constant PV mean flow structure is
motivated primarily by the resulting simplicity of the problem,
but also by the observation that PV staircases can emerge
on rotating planets in realistic parameter regimes (Scott and
Dritschel, 2012, and references therein). Moreover, PV gradients
are often concentrated in narrow zones in the real atmosphere (e.g.
Hoskins et al., 1985) and evidently in the atmospheres of the gas
giant planets (cf. Marcus, 1993). The simple PV structure adopted
allows a full specification of the mean flow profile with only four
independent parameters, one of which is the domain-averaged
meridional shear. By assuming this parameter is zero (leaving
an examination of its effect for a later study), we are left with
only three independent external parameters: the gap between the
positive PV jumps, the amplitude of the negative PV strip, and
the planetary vorticity gradient. These parameters nonetheless
allow for a rich variety of unstable initial mean flows, permitting
us to examine how flow equilibration and jet sharpening depend
on the external parameters, and furthermore how waves and
turbulence evolve and interact with each other and the mean
flow. As such, this study extends Nielsen and Schoeberl’s (1984)
study of the nonlinear equilibration of a barotropic point jet,
and complements Dritschel and Scott (2010) which examined
the sharpening of an initially broad and stable barotropic jet by
externally imposed turbulence.

The article is structured as follows. After detailing the problem
set-up in section 2, we show results from a typical control run
in section 3, first describing the key stages in the flow evolution
(section 3.1) and examining jet sharpening (section 3.2). Then in
section 4 we examine the role of linear instability and, in particular,
the relevance of quasi-linear dynamics to the temporal evolution
of the flow. We then describe results from the full parameter
sweep (section 5) and from this propose a simple model of the
dependence of the flow evolution and its equilibration on the
initial flow. A few conclusions are offered in section 6, followed
by details of the numerical method, special equations and linear
stability in the appendices.

2. Problem formulation

We employ the single-layer quasi-geostrophic (QG) equations,

Dq

Dt
= ∂q

∂t
+ u·∇q = 0 , (1)

∇2ψ = q − βy , (2)

u = −∂ψ

∂y
, v = ∂ψ

∂x
, (3)

consisting of a single dynamical equation expressing material
conservation of PV q and linear inversion relations providing the
velocity field (u, v) in terms of q, here for the simplest case of an
infinite radius of deformation in which the PV q reduces to the
absolute vorticity. q − βy is the corresponding relative vorticity or
vorticity anomaly (β is the constant planetary vorticity gradient)
and ψ is the streamfunction. The domain is a periodic channel,

without loss of generality of length 2π in x (periodic), and of
width Ly in y (with free-slip boundaries at y = 0 and Ly).

Our aim is to determine how nonlinear energy and enstrophy
cascades and jet sharpening processes take place as an initially
unstable flow equilibrates. For maximal simplicity, we consider
a zonal jet consisting of just two equal ‘poleward’ jumps in PV,
without loss of generality of magnitude �q0 = 2π , shown in
Figure 1(a). The jumps are separated by a gap g in y. Alone,
these jumps induce a blunt jet (two overlapping jets, with nearly
uniform flow speeds in the narrow gap). Reducing g to zero
intensifies the jet. In this way, we can study jet sharpening by
the reduction of the distance between the two jumps, which
when disturbed, may become complicated curves or contours
(see below). Alone, these jumps comprise a monotonic PV
distribution, and hence are stable, even to nonlinear disturbances
(Dritschel, 1988a). To induce jet sharpening, we add a third,
opposite-signed PV jump at a distance w below the two jumps
already introduced. Taking q1 to be the PV below the opposite-
signed PV jump (in y ∈ [0, y1]), we set the PV above this jump (in
y ∈ [y1, y2], where y2 = y1 + w) to be q2 = q1 − γ�q0. Between
the original two jumps (in y ∈ [y2, y3], where y3 = y2 + g),
we set the PV to q3 = q1 + �q0. Then, the PV above the
uppermost jump (in y ∈ [y3, Ly]) is q4 = q1 + 2�q0. To centre
the configuration, we choose (y1 + y3)/2 to lie at the domain
centre, Ly/2; then y1 = (Ly − g − w)/2, y2 = (Ly − g + w)/2
and y3 = (Ly + g + w)/2.

The value of q1 is chosen to ensure that there is no net shear
across the domain: u(0) = u(Ly). This requires

∫ Ly

0
(q − βy) dy = 0,

leading to q1 = βLy/2 + �q0{(γ + 1)w/Ly − 1}. A mean shear
may be easily incorporated, but this is left for a future study.
The values of u(0) = u(Ly) are set by the additional requirement

that the average zonal velocity vanishes,
∫ Ly

0 u dy = 0, though this
choice is not important for the dynamical evolution of the flow
(it merely translates the reference frame). The undisturbed PV
distribution is illustrated in Figure 1(a). The domain aspect ratio
Lx/Ly and numerical resolution (see below) were chosen to ensure
adequate resolution of the lengths g and w and of the mature
stages of the instability, which exhibits a growth in scale along
the jet (an inverse energy cascade). After much experimentation,
which included performing runs at half and quarter resolutions to
check sensitivity, we decided to fix the width w of the anticyclonic
zone below the double jump at w = Ly/40 in a domain of width
Ly = π/2 (hence Lx/Ly = 4). Then, the key physical parameters
are (Figure 1(a)):

• α = g/w: the dimensionless width of the gap between the
two positive PV jumps;

• γ : the ratio of the anti-cyclonic shear to �q0; and
• β̂ = βw/�q0: the variation of the PV across the anti-

cyclonic zone, divided by �q0.

All runs are carried out to t = 50, corresponding to 50
characteristic ‘eddy-turnaround’ times, based on the PV contrast
(4π) across the double jump.

To help understand how the nonlinear equilibration and
jet sharpening depend on these parameters, we chose α ∈
{0, 0.5, 1, 2}, γ ∈ {0.5, 1, 2}, and β̂ ∈ {0, 0.05, 0.1, 0.15, 0.2},
giving a total of 60 cases.

We use the Combined Lagrangian Advection Method (CLAM;
Dritschel and Fontane, 2010) for our numerical simulations.
This highly accurate hybrid method, based on contour advection
(Dritschel and Ambaum, 1997) and standard pseudo-spectral
techniques, allows for very high numerical accuracy at low
computational cost, permitting us to carry out a wide
parameter sweep. Details of the numerical method are given in
Appendix A.
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Figure 1. The basic-state PV structure together with the relevant parameters defining it: (a) the initial zonally symmetric state. (b) An idealized equilibrated state, as
discussed in section 5.2.
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Figure 2. The initial (solid) and final (time t = 50, dashed) zonally averaged profiles of (a) zonal wind and (b) PV, for the control run (α = 1, γ = 1, β̂ = 0.05).

3. The control run

3.1. Evolution stages

We start by describing the main typical characteristics of the
flow evolution, using a control run. The general features of the
flow evolution are similar in many respects to other existing
studies of the equilibration of a barotropically unstable jet (e.g.
Nielsen and Schoeberl, 1984; Schoeberl and Lindzen, 1984;
Dritschel, 1989; Vallis, 2006, his Figure 6.6), but our focus
is different. Moreover, our numerical simulations are carried
out at substantially higher resolutions than in previous studies,
permitting us to see new, evidently generic features not evident
in lower-resolution simulations. We will emphasize the features
of the evolution which are important for our discussion.

We choose a control run for which the gap width is equal to the
width of the negative PV strip (α = 1), the negative PV jump is
equal to each of the positive jumps (γ = 1), and β̂ = 0.05–not

zero, but small enough to have a westerly jet as in observations
(at large β̂ we get strong easterly jets at the flanks of the domain).
The initial and final zonal mean zonal wind and PV profiles for
these parameters are shown in Figure 2. We see a single eastward
jet, flanked by westward flow. Initially, there are sharp meridional
changes in the zonal mean wind shear, corresponding to the
initial meridional PV jumps. This initial profile is unstable, and,
as we will show in Figure 3, barotropic Rossby waves develop,
mixing the negative PV strip mostly southwards into the adjacent
PV region until it almost disappears. The final PV profile is
monotonically increasing in the region initially occupied by PV
jumps. Furthermore, the jet becomes weaker, smoother, and
slightly broader (dashed lines in Figure 2).

Figure 3 shows instantaneous longitude–latitude sections of
the PV field (shading), chosen during different stages of the
evolution. At time t = 2, the initial PV structure is still evident,
with the low PV strip (q2) in darkest grey, and the gap region (q3)
rendered by the second lightest grey shading, just north of q2.

c© 2013 Royal Meteorological Society Q. J. R. Meteorol. Soc. 140: 2444–2464 (2014)
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Figure 3. x–y snapshots of the PV field which starts from a zonally symmetric profile as in Figure 1, at times (a) 2, (b) 4, (c) 10, (d) 16 and (e) 46 (grey shading).
The low PV strip, q2 (darkest shading in (a)), breaks up into low PV vortices. The grey shading denotes the four PV values of Figure 1(a), marking q2, q1, q3, q4 from
darkest to lightest grey. The white arrows shown in (d) indicate the flow in the x–y plane. Note that the latitude range shown varies between the plots.

The waves evident on the interface have a zonal wavenumber of
the most unstable normal mode (section 4). At later times, these
waves roll up and break into vortices (t = 4). This nonlinear roll-
up is similar to that found in the Rayleigh problem (e.g. Dritschel,
1989; Vallis, 2006, his Figure 6.6). As time advances, the vortices
shear and pair, while the dominant wavenumber of the interface
undulations decreases (t = 10). During this process, low PV
material from the vortices gets mixed into the southernmost PV
region, and some gap material gets ejected into thin filaments
within adjacent regions. As the anticyclonic vortices get smaller,
the interface waves grow both in amplitude and wavelength,
and dominate the flow field so that the vortices circle around
within the larger interface wave regions. This is seen at t = 16
where the flow in one section is indicated by white arrows. The
vortex pairing and growth of the interface wavelength halt when
the vortices mix into their surrounding, leaving two relatively
homogenized PV regions with a gap region in between, which is
almost completely eliminated in some regions and only slightly
narrowed in others (t = 46). We will show later that the total
amount of fluid in the gap region has reduced significantly from
the initial to the final stages. We see that the smooth meridional
gradient of zonal mean PV in the final state (Figure 2(b)) is an
artifact of the averaging of the wavy PV staircase structure. Sharp
PV gradients persist at all times.

The growth of wave amplitude is clearly evident in the domain-
integrated EKE and enstrophy, both plotted in Figure 4(a). As in

Nielsen and Schoeberl (1984), we find down-gradient PV fluxes
which spread meridionally during the nonlinear eddy growth
stage and then oscillate during the saturated stage. This indicates
that such flow evolution features may be common to many flow
configurations.

We next examine the spectral evolution of the flow. From
the eddy energy spectrum Ek(y, t) (the portion of EKE in
(zonal) wavenumber k, with the subscript k denoting the kth
component of the Fourier transform), we define a characteristic
wavenumber as

ke(t) ≡
∫ Ly

0

∑nx/2
k=1 kEk(y, t) dy∫ Ly

0

∑nx/2
k=1 Ek(y, t) dy

, (4)

where here nx = 1024. This wavenumber essentially picks out the
number of interface undulations. Figure 4(b) shows its evolution,
plotted over the EKE spectrum. We see that ke represents the peak
EKE wavenumber well. The wavenumber is largest between t = 2
and 3, when the linear instability saturates. In the next section we
show that the maximum value of ke is the (linearly) most unstable
wavenumber of the initial mean flow configuration. Note that
we initialize the flow with a perturbation having a wavelength
much larger than the most unstable mode, and thus it takes
time for the most unstable mode to emerge. After the initial
growth stage, ke starts decreasing, signifying an upscale energy
cascade. This cascade is fastest during the stage when EKE and
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Figure 4. (a) Domain-integrated EKE (×10, solid line) and eddy enstrophy (dashed line), normalized by (w�q0)2, and the correspondingly scaled mean squared
interface displacement divided by ke (Eq. (12), stars), at every 5 time units. (b) EKE spectrum (thin contours), and the dominant energy wavenumber ke (Eq. (4), bold
line).

eddy enstrophy grow. Thus, the eddies initially grow by linear
instability and then by a (nonlinear) upscale energy cascade.
During the upscale cascade stage, the negative zonal mean PV
region spreads southwards and widens. As shown below, the
robust positive meridional eddy PV flux can be explained by the
southward moving or spreading of the anticyclonic vortices (a
negative meridional drift of negative PV).

The upscale energy cascade continues until around t = 15,
after which we see relatively constant eddy amplitudes and
wavenumbers (Figure 4(a,b)). The mean flow also stabilizes, with
the meridional PV gradient region remaining constant in width.
The remaining weak anticyclonic vortices now circle around
within large wave crests, so that the southern edge of the mixed PV
region also assumes a wavy shape (e.g. t = 16, Figure 3). During
this stage, the PV fluxes become much smaller and are more
variable (they are not downgradient any more; not shown). This
suggests that the interface now mostly evolves on its own, and is no
longer significantly influenced by the much diminished vortices.

Two-dimensional homogeneous QG turbulence is char-
acterized by a downscale enstrophy cascade, alongside an
upscale energy cascade (Fjørtoft, 1953). Figure 5 shows an
enstrophy-based wavenumber kens, similar to ke (as in Eq. (4),

but with eddy enstrophy instead of EKE), calculated for two
regions, one near the PV interface (0.7 ≤ y ≤ 0.9) and one at
0.3 ≤ y ≤ 0.6, where the vortices shear and merge (after they
reach the region at around t = 10). We see that, in the region
of vortex shearing and pairing, the behaviour is turbulent with
enstrophy cascading to smaller scales (thin line after t = 15),
while in the interface region the enstrophy cascades to larger
scales, like the EKE. The coherent interface structure traps enstro-
phy, enabling it in this region to cascade to large scales like energy.
Similarly, in homogeneous QG turbulence, coherent vortices trap
a portion of the enstrophy, enabling it to cascade to larger scales
by vortex pairing (Dritschel et al., 2009). This is not inconsistent
with the net direct, downscale cascade of enstrophy.

3.2. Jet sharpening

One of the goals of this study is to understand jet sharpening,
which in this case is manifest as a narrowing of the gap region.
From Figure 3 (showing snapshots of the PV field), it is clear that
gap material is ejected when the negative PV strip breaks up into
vortices, and when vortices shear and pair during the nonlinear
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Figure 5. The dominant enstrophy wavenumber kens (Eq. (4), but with enstrophy instead of EKE) averaged over the region in which the negative PV vortices dominate
(0.3 ≤ y ≤ 0.6, thin line) and over the region dominated by the interface (0.7 ≤ y ≤ 0.9, bold line).

Figure 6. An example of the ‘dragon-head’ structure which forms in the PV field (shaded as in Figure 3), taken from t = 25 in the control run. The two PV contours
which wrap the domain at the two edges of the gap are marked with a thin black line. The mean distance between these two wrapping contours is calculated for each
longitude section, and then averaged to produce the gap-width statistics of Figure 7.

upscale cascade stage. The processes which extrude gap material
are highly localized, so that after a while the gap width becomes
variable in the horizontal direction. This is seen most clearly
during the saturation stage, when ‘dragon-head’ filamentary
structures form on the interface (Figure 6). These exquisitely
complex fine-scale structures, which form by a localized sequence
of filamentations of the PV interface (cf. Dritschel, 1988b), capture
most of the gap material inside them, so that upstream of the
dragon-head the jump is exceedingly sharp. These structures are
found in all the runs, across the parameter space, and appear
to be a ubiquitous nonlinear feature of barotropic jet instability.
To our knowledge, these dragon-head structures have never been
seen before due to lack of numerical resolution.

We next look more closely at jet sharpening by examining
the evolution of the gap between the two positive PV jumps.
To quantify the gap evolution, we find the PV contours which
wrap the domain and bound the gap from both sides (making
use of the built-in PV contour tracking routine in our numerical
scheme) and determine how much material lies between them for
a given longitudinal section. This is done by calculating the mean
distance between the two contours, which in some locations have
a complex filamentary structure (shown by the thin black lines in
Figure 6). Figure 7(a) shows a probability distribution function
of the different gap width values, at the final time of the control
run. Consistent with the bunching up of all gap material within

dragon-head features, we see an essentially bi-modal distribution.
Nearly half of the gap has narrowed by more than 80% (the
peak at around 0.2), and another section has narrowed by about
30% (peak between 0.6 and 0.8). However note that in some
sectors (which constitute about 14% of the longitude range), the
gap has actually widened, in some cases by more than 50% (as
evidenced by non-zero probability distribution function values
beyond 1.5).

Figure 7(b) shows the time evolution of the zonal mean width
of the gap, and the mean width of the narrowest 25% of the
gap. Since the gap width calculation is numerically intensive, we
only perform it every 5 time units. The gap narrows most rapidly
during the vortex shearing and pairing stage (from t = 0 to 10)
with the narrowest regions reaching a width of less than 10%
of the initial width, and the mean gap reaching 60% of it. After
the vortex shearing stage, the width of the narrowest gap regions
oscillates slowly between 10 and 30%. In summary, our results
demonstrate that jet sharpening–the result of nonlinear wave
breaking–does not occur everywhere along the jet, but instead is
highly inhomogeneous.

4. The role of quasi-linear dynamics

The evolution stages described above suggest there are two growth
stages: a short initial linear growth stage, and a longer subsequent
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Figure 7. (a) The probability distribution function of the different gap width values along a latitude circle at the final time of the control run. (b) The time evolution
of average gap width of all longitude sections (solid) and the narrowest 25% of longitude sections (dashed). The gap statistics are calculated at every 5 units of time. In
both plots, the gap width is given as a fraction of the initial gap width.

nonlinear growth stage. To examine the differences between
these evolution stages more quantitatively, we perform a linear
stability analysis for the zonal mean fields, for each model output
time. Figure 8(a) shows the linear growth rate as a function of
wavenumber and time (in shading) for the control run, along
with the time evolving EKE spectrum. The two spectra match
very well throughout the run, more so even during the later
nonlinear stages. The EKE field initially lags the linear spectrum
by a few time units, partly because we initialize the model
with a zonal wavenumber which is much smaller than the most
unstable one. However, the wavenumber cascade rate, the initial
dominant wavenumber, and the final saturation wavenumber,
are all predicted by the linear instability analysis. We also find
an excellent match between the linear zonal phase speed and
group velocity, and the actual phase and group progression of the
interface waves (not shown).

This relation holds for other runs as well. Figure 8(b) shows
the linear growth rate and EKE for a run with different parameter
values – γ = 1, α = 0.5, and β̂ = 0.2. In this run, there is a
time period (roughly extending from t = 5 to 15) during which
there is a secondary peak in the linear growth rate for long waves
(k ≈ 3). This secondary peak, even though it is relatively small,
is also found in the EKE spectrum of the fully nonlinear run.
Figure 9(a) shows the linear growth rate which corresponds to the
mean flow during this period (t = 7). We see two peaks, at large
and small wavenumbers. The meridional structures of the linear
most unstable long-wave and short-wave modes (k = 3, k = 12)
are shown in Figure 9(c,d). The long-wave mode is antisymmetric
around the jet axis, with two peaks at the flanks of the jet, while
the short-wave mode peaks in the middle of the jet, and is
symmetric about the jet axis. The longitude–latitude structure of
the meridional wind field from the nonlinear model run at this
time (shown in Figure 9(b)) fits the linear mode structure well,
with a meridionally symmetric wavenumber 12 in the centre, and
an antisymmetric wavenumber 3 structure at the jet flanks. This
is so despite the highly nonlinear filamentary structure of the PV
field at this time (not shown). These results support the notion
that linear instability organizes the flow field even during the
nonlinear stages of the flow evolution. We note that nonlinear

interactions contribute to the evolution of the zonal mean flow
itself, so that the dynamics are not quasi-linear. However, given
the mean flow, linear instability appears to determine the growth
of each zonal wavenumber.

To further support this assertion, we compare the contributions
of the linear and nonlinear terms to the EKE evolution. When
deriving the domain-integrated energy equations from the Euler
momentum equations, the Reynolds stress term 〈−u′v′uy〉 (with
overbar and angle brackets denoting zonal and meridional
averages respectively) is the only contribution to energy growth,
implying the domain-integrated contribution of the nonlinear
terms is zero (Schmid and Henningson, 2001). However, our
QG model does not make use of the Euler momentum equations
(instead it is written in PV-streamfunction form), hence it requires
a different approach to examining EKE.

Consider Ek (used earlier in Eq. (4)):

Ek = 1

4

[
u∗

k uk + v∗
k vk

]
. (5)

Its time derivative is

∂Ek

∂t
= 1

2

[
u∗

k

∂uk

∂t
+ v∗

k

∂vk

∂t

]
. (6)

We now use the geostrophic relation (Eq. (3)), and the inverse
Laplacian for the waves (Eq. (2) for k �= 0) to relate the time
derivative of the velocity components to that of the PV q,

∂Ek

∂t
= 1

2

[
−u∗

k∇−2
k

(
∂2qk

∂y∂t

)
+ ikv∗

k ∇−2
k

(
∂qk

∂t

)]
, (7)

where ∇−2
k is the inverse of the kth Fourier component of

the Laplacian (∇2
k ≡ ∂2/∂y2 − k2), which we invert subject to

periodic boundary conditions in x and zero meridional flow at the
channel walls. We then use Eq. (1) to express the time derivative
of PV, and thereby obtain a diagnostic expression for the time
rate of change of Ek,

∂Ek

∂t
= 1

2

[
u∗

k∇−2
k

(
∂

∂y
χk

)
− ikv∗

k ∇−2
k χk

]
, (8)
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Figure 8. EKE spectrum (contours) and the linear growth rate for the mean flow at each time step (shading): (a) for the control run and (b) for a run with α = 0.5,
γ = 1.0 and β̂ = 0.2.

where χk is the kth component of the PV advection term which,
when expressed in terms of linear and nonlinear components,
equals

χk = ikuqk + vkqy + ik(u′q′)k + ∂

∂y
(v′q′)k . (9)

Here primes denote a deviation from the zonal mean. The first
and second terms in Eq. (9) are the linear contributions to χk,
while the third and fourth terms are the nonlinear contributions.

Figure 10(a) shows the domain-integrated rate of change of
EKE alongside the contributions of the linear and nonlinear
terms. Also shown is the residual, calculated by subtracting the
sum of the linear and nonlinear contributions from the full EKE
terms, as an indication of the degree to which our diagnostic
calculation is exact. Consistent with the theory, the domain-
integrated contribution of the linear terms essentially equals the
total EKE growth, with the residual being on the order of 1%
(ratio of variances). This 1% error is reasonable given the time
discretization of the model output, as well as the fact that the PV
anomaly fields which we use are a gridded version of the actual

PV contours which are advected by the model at much higher
resolution. Despite these errors, the domain-integrated nonlinear
contributions are essentially zero (10−6% of the variance).

While the nonlinear interactions do not contribute to
the domain-integrated EKE evolution, they do influence
the spatial and spectral distribution of EKE. Figure 10(c,d)
show wavenumber–time plots of the latitudinally integrated
contribution of the linear and nonlinear terms to Ek, plotted
on top of the EKE spectrum, for the control run. The linear
terms dominate the EKE production, but nonlinear wave–wave
interactions persist when not integrated over all wavenumbers.
These interactions act to spread the EKE to shorter waves at the
expense of longer waves during the later stages of the evolution
when the upscale energy cascade slows down (e.g. from wave
numbers 3–4 to 5–6 after t = 15 in the case shown).

Figure 10(e,f) show the spectrally integrated contribution of
the linear and nonlinear terms, as a function of time and latitude,
plotted over the meridional distribution of EKE. The terms are
calculated as in Figure 10(c,d), only here we sum over zonal
wavenumbers rather than integrate meridionally. Again, we see a

c© 2013 Royal Meteorological Society Q. J. R. Meteorol. Soc. 140: 2444–2464 (2014)



2452 N. Harnik et al.

−1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

La
tit

ud
e

Phase angle (π)

0 0.05 0.1 0.15 0.2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

La
tit

ud
e

2 4 6 8 10 12 14 16 18 20 22 24
0

0.2

0.4

0.6

Zonal wavenumber

Longitude

La
tit

ud
e

0.
2

0.05

0.
00

5

0.40.2
0.05

0.005

0 1 2 3 4 5 6
0

0.5

1

1.5

(c)

(b)

(a)

(d)

Figure 9. Characteristics of the run with α = 0.5, γ = 1.0 and β̂ = 0.2 (shown in Figure 8(b)) at time t = 7: (a) the linear growth rate; (b) a latitude–longitude
section of the meridional wind from the fully nonlinear model run (negative values dashed, positive regions shaded); and the linear geopotential height wave (c)
amplitude and (d) phase (units of π), for zonal wavenumbers k = 3 (thin) and k = 12 (bold).

strong dominance of the linear terms, with the nonlinear terms
acting to spread EKE from the central region containing the PV
jumps to the jet flanks.

These findings indicate a dominant role for linear dynamics in
determining the evolving wave structure. Nonlinear wave–wave
interactions do not create EKE, rather they act to shift it in scale.
However, it is important to note that the linear stability analysis
used to create Figure 8 assumes a given zonal mean flow, which
itself is evolving by nonlinear wave–wave interactions. Our results
therefore do not imply that a wave–mean flow model will capture
the full evolution well (consistent with Nielsen and Schoeberl,
1984).

5. Parameter sweep

In the previous section we described the flow evolution in terms
of an initial linear growth stage, a nonlinear upscale cascade
stage during which the PV gap narrows, and a final equilibrated

stage, and noted that linear dynamics play an important role
even in the nonlinear cascade stage. In this section we examine
the full parameter sweep of runs. We find that the basic
control run characteristics described in the previous sections
hold across the entire parameter space considered. Here we
examine quantitatively and qualitatively how quantities like the
final domain-integrated EKE and wave amplitude depend on
parameters, and thereby aim to elucidate the processes shaping
the final flow equilibration.

5.1. General features of flow evolution and equilibration

We consider the full set of model runs, for which the
strength of the negative PV strip is varied between three values
(γ = 0.5, 1, 2), the initial gap width is varied between four
values (α = 0, 0.5, 1, 2 ) and β̂ is varied between five values
(β̂ = 0, 0.05, 0.1, 0.15, 0.2) – altogether 60 runs. Figure 11
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Figure 10. EKE budget for the control run. (a) the domain-integrated rate of change of EKE (shading), the contributions of the linear (solid) and nonlinear (dashed)
terms, and the residual (EKE growth minus the linear and nonlinear contributions, grey contour), all ×106; (b) the time integral (×105) of the quantities shown in (a);
(c) a wavenumber–time plot of the latitudinally integrated contribution of the linear terms to Ek (×103, contours, negative dashed) and the EKE spectrum (shaded);
(d) is as (c) but for the nonlinear terms; (e) latitude–time plot of the spectrally integrated contribution of the linear terms to EKE (×105, contours and shading as in
(c); (f) is as (e) but for the nonlinear terms.

shows the initial and final zonal mean zonal wind (u) profiles
for a representative subset of runs with β̂ = 0, 0.1, 0.2 and
γ = 0.5, 2. We see that β̂ has the largest effect on the initial
u, in particular on the shape of the flow at the sides of the
channel. For β̂ ≥ 0.1 the shear reverses in the outer parts of
the domain, with the extent of the reverse-shear regions and
the strength of the shear increasing with β̂ . However, for all
profiles there is a locally eastward jet at the channel centre, on
which the instability develops and evolves. The effect of this
instability on the zonal mean flow (shown in grey curves) is
to weaken the eastward jet at the jet core (zonal deceleration),
and to accelerate the flow slightly in the southern part of the
domain. The weaker zonal mean winds at the jet core are partly
a result of zonally averaging a wavy field – however, even the
mean tangential winds along PV contours are weakened (not
shown). The degree of change between the initial and final u
profiles is mostly affected by γ , which directly controls the

strength of the instability and its growth rate. The effect of α

is mostly small, except for the case of β̂ = 0.1, γ = 2, where
the different curves are well separated (we have not been able
to explain what determines the sensitivity to α in this subset
of runs).

While the initial zonal mean flow varies considerably with β̂ ,
the evolution of the disturbances as well as the zonal mean PV
field vary remarkably little. Figure 12 shows the initial and final
zonal mean PV fields, for the subset of runs with β̂ = 0, 0.2 and
α = 0, 0.2. For clarity, we show the profiles for three different
γ values on each subplot. By comparing these plots, we see that
γ affects the relative strength of the initial anticyclonic PV strip,
while α slightly affects its meridional position. By construction,
β̂ does not affect the initial PV profile, but it does slightly affect
the equilibrated profile (grey curves).

For all runs, the initial PV jump is smoothed out over a region
of finite width, while the initial low-PV strip is mixed southwards,
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Figure 11. The initial (black) and final (grey) zonal mean zonal wind profiles for a subset of runs in the parameter sweep. (a, c, e) and b, d, f) correspond to
γ = 0.5 and 2, respectively, while (a, b), (c, d) and (e, f) represent β̂ = 0, 0.1, 2, respectively. The line thicknesses correspond to different α values, with the thinnest
line representing α = 0. Note that, for most of the runs, the sensitivity to α (difference between curves with different thickness) is noticeable only near the jet
centre.

leaving a wide and shallow low PV region (cf. Figure 2(b), and
the grey curves in Figure 12). The smoothing of the positive PV
jump is a result of the zonal averaging of the wavy interface which
actually remains sharp, and since the wave amplitudes increase
with γ , the width of the smoothed-out region increases with γ .
The mixing of the anticyclonic PV strip, on the other hand, is the
result of its breaking up into vortices, which merge and mix after
being deformed by the strong cooperative shear (∂ ū/∂y > 0)
present between y1 and y2 (cf. Figure 3). For weak to moderate
PV strips (γ ≤ 1), the vortices mix completely, leaving a smooth
shallow low PV region. However, for γ = 2 and β̂ ≥ 0.1, we see a
small PV peak at the southern edge of the mixing region. In these
runs (e.g. the case α = 2, γ = 2, β̂ = 0.2 shown in Figure 13),
we find that the stronger vortices are able to withstand the shear,
while they move downward due to a β-drift (Lam and Dritschel,
2001).

For β̂ ≥ 0.1, the sign of the shear reverses about half way
to the channel boundaries (e.g. the black curve shown on the
left side of Figure 13(a)), and hence the vortices eventually run
into a zone of adverse shear (∂ ū/∂y < 0) which stretches them
into filaments. Moreover, the elongated anticyclonic filaments

become stable if the adverse shear becomes strong enough,
resulting in a final zonal PV strip (e.g. Figure 13(d) and the
negative kinks in the final zonal mean PV profiles of Figure 12).
Dritschel (1989, p. 204) found by numerical experimentation that
a periodic array of vortices will be stretched into filaments when
the adverse shear exceeds approximately 21% of the anticyclonic
PV anomaly (i.e. −∂ ū/∂y > 0.21γ�q0). Using the initial mean
velocity profile, −∂ ū/∂y = q1 − βy in the southernmost region
(Figure 1(a)), where q1 = βLy/2 + �q0{(γ + 1)w/Ly − 1},
we find that this critical shear value of 21% occurs at
latitude

yas = Ly

2
− w

0.21γ + 1 − (1 + γ )w/Ly

β̂
. (10)

The solid horizontal lines in Figure 13 show this latitude for
the β̂ = 0.2 runs. We see that yas well predicts the latitude
where the vortices are elongated into filaments. The filaments
forming south of yas, where the adverse shear is stronger still,
resist rolling back into vortices, even though the filaments are
potentially unstable (Dritschel, 1989). However, this instability
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Figure 12. The initial (black) and final (grey) zonal mean PV profiles for a subset of the runs in the parameter sweep. (a, c) and (b, d) correspond to α = 0, and 0.2,
respectively, while (a, b) and (c, d) represent β̂ = 0 and 2, respectively. The line thickness corresponds to different γ values, with the thinnest line representing the
largest γ (2). To highlight the central jump region, the plotted range does not cover all of the model domain.

tends to fracture filaments into smaller filaments, and beyond
−∂ ū/∂y ≈ 0.64γ�q0 even this instability is suppressed. The
latitude at which this stronger shear occurs is marked by the
dashed lines in Figure 13(d), and corresponds well to the location
of the zonal PV filaments which form the kinks in Figure 12.
Taken together, these results underscore the key role played by
adverse shear in barotropic instability when β �= 0. Remarkably,
results obtained using constant, spatially uniform adverse shear in
Dritschel (1989) well predict the shearing-out of the anticyclonic
street of vortices produced in the early stages of instability, as well
as the deposition of filamentary debris into a stable band at late
times.

Next we examine the domain-integrated EKE (denoted ‖EKE‖)
and show that it is closely related to the mean-square displacement

η2 of the PV interface. This is expected given the dominance of the
interface waves on the flow field structure (particularly evident
after t = 16 in Figure 3), and from the fact that the EKE-
based zonal wavenumber ke (Eq. (4)) captures the interface
wavenumber (rather than the number of vortices, which is
sometimes slightly different, e.g. Figure 13(b)). For the case
of a single PV jump of magnitude 2�q0 = 4π , in an infinite

domain, the eddy PV anomaly is indeed dominated by the
interface displacement, and can be related to it using Eq. (27)
of Harnik and Heifetz (2007),

‖EKE‖1J = (2�q0)2

4k
η2, (11)

where ‖ · ‖ and · indicate integration over the entire domain
and over the zonal direction, respectively, and the subscript
1J denotes a single jump (Appendix B gives the explicit
derivation). According to this relation, ‖EKE‖ is proportional
to the wavelength times the mean squared interface displacement
(which for a single wavenumber is twice the wave amplitude
squared). From the discussion above, it is appropriate to take
k = ke.

To examine whether this relation–derived for a single
PV interface –still holds in our model, we calculate the
equilibrated ‖EKE‖, mean squared interface displacement, and
zonal wavenumber ke, by time averaging each run over the
final quarter of the integration (37.5 ≤ t ≤ 50). Figure 14 shows

η2/k as a function of ‖EKE‖, multiplied by a constant factor
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Figure 13. (a) Time–latitude plot of the zonal mean PV for the run α = 2, γ = 2, β̂ = 0.2 and the final zonal mean wind profile (bold black curve on left); (b)–(d)
instantaneous PV fields for times t = 7, 15, 49, respectively, with smaller PV values darker. In all plots, the critical latitudes based on the adverse shear thresholds of
21% (Eq. (10)) and 64% (see text for details) are marked by horizontal black solid and dashed lines respectively.

which we empirically found to give the best relation. The figure

shows that indeed ‖EKE‖ is proportional to η2/k, but with
a multiplicative factor π/4 (determined empirically) relative
to Eq. (11):

‖EKE‖ = (�q0)2

2k
η2

π

2
= π

4
‖EKE‖1J. (12)

This small difference may arise from the fact that we actually
consider two jumps rather than one, in a confined channel rather
than an open domain, which changes the Green function relation
between PV and streamfunction.

This strong relation between ‖EKE‖ and η2 is a key new finding
of the present study. The domain-integrated EKE is determined

by two characteristic quantities of the flow: the average PV
interface displacement and the characteristic zonal wavenumber.
We expect this relation to hold well for other set-ups with a jet
on a sharp PV jump, and for asymmetric barotropically unstable
flows in which a sharp PV jump remains after the instability
develops.

The relation between ‖EKE‖ and η2 also holds throughout
the temporal evolution of individual runs, and not just for the

equilibrated states. This is shown in Figure 4(a), where η2/ke

calculated every five time units is shown in stars. Examining the

temporal evolution of ‖EKE‖, η2 and ke for all other runs, we
find that γ primarily influences the growth rate, the subsequent
rate of vortex pairing, and the upscale energy cascade. In fact,
γ�q, which has units of PV, is the externally imposed evolution
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rate in this problem∗. Figure 15 shows the time evolution of
these quantities (with appropriate scaling, see below) for β̂ = 0.5
(Figure 15(a, b, c)). Also shown (Figure 15(d)) is ‖EKE‖ for
β̂ = 0.15. We see that for a given β̂ , when we scale time
by γ , the different curves nearly collapse on each other, with
ke clearly exhibiting a linear growth stage (during which the
wavenumbers grow from the initially imposed wavenumber to
the most unstable wavenumber), a nonlinear cascade stage, and a

subsequent equilibration stage (Figure 15(a)). ‖EKE‖ and η2 also
increase with γ , since the growth rate increases with γ ; however,
the exact dependence is not as straightforward. In fact, empirically
we find that for a given value of β̂ , the final mean-square interface

displacement η2 scales best with γ (Figure 15(b)), while the final
‖EKE‖ scales best with γ 3/2 (Figure 15(c,d)). These results, along
with Eq. (11), imply that the equilibrated interface wavenumber
ke should scale like γ −1/2.

The dependence of ‖EKE‖, η2 and ke on β̂ is more complicated
than on γ and is even non-monotonic for smaller γ values. In
the next section we develop an idealized model for the evolution
and for the equilibrated state that is able to capture this relation.
The dependence on α, denoted in the plots by different line
thicknesses, is weak.

While the existence of a gap does not appreciably affect the
basic relation between ‖EKE‖ and interface wave amplitude,
from the point of view of PV staircase formation it is worth
examining how the change in gap width depends on the model
parameters. Since the gap narrows when the anticyclonic vortices
strip PV from it by filamentation, we expect the gap to be
more affected by stronger vortices, which form more filaments.
Figure 16 shows the relative change in gap width (with respect
to the initial width) as a function of model parameters. We see,

∗Strictly speaking, �q – the magnitude of the positive jumps – is also an
externally imposed evolution rate, but since we only vary the magnitude of the
negative jump, γ�q is the relevant evolution rate for comparison between the
different runs.

as expected, the strongest dependence on γ , with narrower final
gaps for larger γ . We also see that narrower initial gaps (smaller
α) are more affected, since the filaments form more readily
on sharper PV profiles (Dritschel, 1988b), whereas β̂ has little
influence.

Additionally we examined a few parameter values outside
the ranges indicated above to ensure that the main effects
reported above are not qualitatively different. In particular,
very wide gaps with α = 4 did not result in significant
differences from α = 2. Very weak γ values (we examined
γ = 0.2) result in very little disruption of the original jet,
while very strong values (we examined γ = 4) give results
qualitatively similar to γ = 2, except that a wider domain is
needed to allow for equilibration, and the vortices do not mix
completely (some smaller coherent vortices remain). Finally,
values of β̂ > 0.2 greatly suppress the development of the initial
instability by preventing meridional excursions of the anticyclonic
vortices which initially roll up, thereby suppressing vortex
pairing.

5.2. The mechanisms of flow equilibration

In common with all of the parameter sweep runs, an initially
unstable zonal anticyclonic PV strip rolls up into vortices which
shear and merge nonlinearly, while spreading southwards. During
this process the interface waves grow in zonal wavelength
and in amplitude, and this process continues as long as the
zonal mean PV field is still linearly unstable. In this section
we develop an idealized model of this process, and use it in
combination with conservation laws to obtain a prediction of
the final wave amplitudes, domain-integrated EKE, and some
basic mean flow properties, all as a function of initial flow
parameters.

Conservation of wave impulse is one of the basic laws governing
the evolution of the flow. Dritschel (1988a) showed that, for the
contour dynamics model used here, this implies the conservation
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Figure 15. (a) ke as a function of the time scaled by γ , for β̂ = 0.05; (b) the rms interface displacement η2
1/2

, divided by 2(γ )1/2 for β̂ = 0.05 (note that η2
1/2

was
calculated only every 5 time units); (c) ‖EKE‖ divided by γ 3/2 for β̂ = 0.05; (d) is as (c) but for β̂ = 0.15. In all plots, line thickness denotes α (thinner for smaller
α), and line colour denotes γ (darker for smaller γ ). Note that the length of the time series is proportional to γ . Dashed lines in (c) and (d) are for longer integrations
of the γ = 0.5 runs needed for full equilibration, and plotted using the same thickness and colour coding.

of the following wave activity quantity:

I = 1

2

∑
j

�qj

∮
Cj

η2
j dx = constant, (13)

where we sum the product of �qj – the PV jump across the jth
PV contour – and the integral along the contour Cj of the squared
contour displacement η2

j . Here, ηj(x, t) is the displacement from
its reference state latitude ȳj (i.e. yj(x, t) = ȳj(y, t) + ηj(x, t)),
with ȳj obtained by rearranging the flow into a zonally symmetric,
monotonically increasing PV field, keeping the area between PV
contours the same as in the actual flow state.

Examining the structure of the equilibrated flow in our runs,
it is clear that implementing this wave activity conservation
relation is practically impossible, given the high distortion and

pinching off of the PV contours in the mixing region. We
instead take an approximate, simpler approach. Ignoring the
gap region, which has little influence on the final state, the
equilibrated, non-zonal flow is taken to consist of three uniform-
PV regions extending around the domain in the zonal direction,
with highly undulated boundaries separating them. The PV in
the middle region is slightly lower than in the southern region,
while that in the northernmost region is significantly larger, by an
amount equal to the initial domain-wide jump (q4 − q1 = 2�q0).
The undulations of the boundaries between these regions are
a consequence of the initial barotropic instability and, since
dissipation is negligible, they remain in the equilibrated state. We
define a final ‘reference’ state as the corresponding three-region
wave-free state, obtained by simply straightening the interfaces,
so that no circulation is lost within a given region. This final
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Figure 16. The final relative gap width (with respect to the initial gap width α) as a function of γ and β̂ , for non-zero α values (a) 0.5, (b) 1.0, and (c) 2.0.
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reference state, shown in Figure 1(b), has only two PV jumps and
is described by three unknown parameters: ym, �ym and �qm,
respectively the central latitude and width of the mixed region
and the magnitude of the negative PV jump. Demanding that the
domain-integrated PV be conserved yields

�qm = γ w�q0

�ym
(14)

for an initial state with α = 0.
This idealized final state consists of only two contours:

(i) at the main PV interface y = yint ≡ ym + (�ym/2), where
�q = 2�q0 + �qm, and
(ii) at the southern edge of the mixing region y = ysem ≡
ym − (�ym/2), and �q = −�qm.
This simplifies the application of Eq. (13) considerably so that

η2
int = − �qm

2�q0 + �qm
η2

sem ≈ − �qm

2�q0
η2

sem , (15)

where for simplicity we neglect �qm relative to 2�q0 (this is
justified across the entire parameter space we have considered)†.
In our numerical model runs, the main interface displacement ηint

assumes a well-defined wavy shape, and its mean amplitude can
be diagnosed simply using the PV contours which bound the gap
region wrapping around the domain (black lines in Figure 6). The
southern interface ysem, however, is not as clearly defined. While
there is a clear lower edge to the mixed region (e.g. Figure 3), it is
not obviously associated with any single PV contour, since many
of the contours in the mixed region close off to form vortices.
We assume, for simplicity, that the messy mixed region can be
replaced by a perfectly mixed PV region with a wavy southern
boundary, and that the amplitude of the waves on this boundary

is proportional to the width of the mixing region: η2
m

1/2 = B�ym

with a proportionality factor B to be determined empirically.
Equations (15) and (14) then yield the following (scaled) estimate

†We here apply Eq. (13) to a non-monotonic reference state, which is permitted
mathematically.
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for the mean-square interface displacement:

η2
int

w2
= B2γ�ym

2w
. (16)

Combining this with Eq. (12) further yields a relation between
EKE and �ym:

‖EKE‖
π
2 (w�q0)2

= B2γ�ym

4kw
. (17)

The validity of replacing the actual complex flow field by
our highly simplified model is our central assumption. In

Figure 17(a,b) we examine its validity by comparing η2
int from

Eq. (16) and ‖EKE‖ from Eq. (17), with the actual mean-
square interface displacement and domain-integrated EKE of the
equilibrated states of all 60 of our model runs. We find that a
proportionality constant B = √

2 gives the best fit. From both
plots we see that for most runs, in particular those with smaller
γ values, the implied theoretical relations between domain-
integrated EKE and interface wave amplitude hold well in the
nonlinear model. The run for which the EKE relation fits worst is
γ = 2, α = 2, β̂ = 0 (marked by a triangle added at the top of
Figure 17(b)). For this run, both large γ and zero β̂ contribute
to the spreading of the PV mixing region, which reaches the
domain boundaries. Rerunning this case with a domain twice as
wide (Ly = π) and recalculating the EKE–�ym relation yields
an excellent scaling (marked by the large triangle at the top-right
corner of Figure 17(b)).

These results lend strong support to our simple conceptual
model of flow equilibration, in which mixing by barotropic
instability creates a final three-region structure, under the
constraints imposed by conservation of wave activity and
circulation. The model provides a clear relation between the
width of the mixed region and the final interface wave amplitude.
Notably, our key assumptions (conservation of circulation and
wave activity, along with Eq. (12)) do not depend on ym, the
mean latitudinal position of the mixed region. In other words, the
exact value of ym does not matter in this simple model. (It could
in principle be determined by total energy conservation, but see
below.)

However, the width of the mixed region �ym in Figure 17(a,b),
and the characteristic zonal wavenumber ke in Figure 17(b), were
determined diagnostically from each model run. Alternatively,
we can use a linear stability analysis to determine �ym and
k as follows. As the initial instability evolves and mixes
PV, the width of the mixed region south of the initial jet
increases. We saw in section 4 that this continues until the
underlying zonal flow reaches a state of marginal stability.
Using Eq. (14), and a linear stability analysis of the three-
region reference state (Appendix C gives details), we find
the maximum �ym which allows for instability, assuming (1)
discrete zonal wavenumbers (consistent with x periodicity), and
(2) that all the mixing occurs south of the initial interface
location, so that yint = y2 = (Ly + w)/2 and correspondingly
ym = (Ly + w + �ym)/2. This latter assumption, which is both
simple and well supported by the model runs (Figures 3 and 12),
is elaborated below. We refer to the marginally unstable mixing
region width as �yc (Appendix C). The stability analysis also
provides the wavenumber k for this marginally unstable flow.
Figure 17(c, d) shows the relation between the computed values

of η2 and ‖EKE‖ for the runs with α = 0, and the corresponding
estimates based on the marginally unstable idealized profile (e.g.
Eqs (16) and (17) with �yc instead of �ym, and the corresponding
wavenumber k). We see that this estimate works well, although
it is not as quantitatively accurate as taking the actual edge of

the mixing domain. In fact, a factor of B = 21/4 between η2
1/2

and �yc gives a much better fit. Nonetheless, a linear stability
analysis yields a good qualitative prediction of how the final
domain-integrated EKE and interface wave amplitudes depend
on γ and β̂ .

6. Conclusions

In this work we comprehensively examined one of the most
fundamental processes operating in the atmosphere and oceans:
barotropic instability, which arises when both positive and
negative PV gradients are present. Using a simple model
generalizing the Rayleigh problem of a single PV strip to include
a background meridional PV gradient in the simplest possible
manner, we find a consistent pattern of behaviour across a wide
range of parameters defining the initial flow, beginning with a
linear growth stage, a nonlinear cascade stage, and a subsequent
equilibration stage.

The unstable perturbations mix the negative PV strip across
a region which widens with time. Since circulation is conserved,
the mean PV of the strip increases (becomes closer to zero). This
process of widening and shallowing the low-PV strip continues
until the instability halts, leaving essentially the original large
positive PV gradient, which now carries large-amplitude Rossby
waves, alongside a shallow mixed low-PV region. Conservation
of wave activity then implies that the wave activity in the Rossby
waves is equal to minus the wave activity embedded in the highly
nonlinear mixed region.

To make the problem tractable, we then assume that the
contribution of the PV contours in the highly distorted mixed
region is equivalent to that of well-defined waves on a single
negative PV jump, with an amplitude which is directly related
to the width of the mixed region. Since the interface waves
dominate the non-zonal velocity field, their amplitude is an
excellent measure of the domain-integrated EKE. Thus, by
combining conservation of wave impulse and circulation, along
with marginal linear stability, we obtain a model which links the
final domain-integrated EKE to the width of the mixed region.
The numerical integrations show that, across a very wide range of
flow parameters, this theoretical model describes the equilibrated
flow features particularly well given the actual width of the
equilibrated mixed PV region, and describes it qualitatively well
when the mixed region width is predicted from the initial mean
flow parameters using marginal linear stability as an additional
constraint.

We note that Schoeberl and Lindzen (1984), and also Nielsen
and Schoeberl (1984) used a similar approach for a barotropically
unstable point jet, using enstrophy conservation and assuming
the mean flow evolves to a neutrally stable state with PV
rearrangement confined as much as possible to the jet centre.
Their implied final PV profile has uniform PV in the narrowest
region possible, which requires averaging the PV between different
zonal strips. However their assumption ignores the impact of
large-amplitude waves, which act to broaden the region in which
the PV gets mixed. One might argue that a more physical process is
a rearrangement of PV to a monotonically increasing profile (cf.
Dritschel, 1988a). This was explicitly shown for the point jet
problem by Shepherd (1988, his Figure 10) to be the nonlinear
stability threshold for this problem, while the constant PV profile
suggested by Schoeberl and Lindzen (1984) is the linear threshold.
However, in the current profile (Figure 1(a)), the lowest PV values
are in the low PV strip, ruling out strict PV rearrangement (which
requires the lowest PV values to be shifted to the lower domain
edge). Rather, we find that the initial negative PV strip gets
‘diluted’ by mixing with surrounding higher PV regions (mostly
to its south). Correspondingly, the equilibrated PV profile is
not monotonically increasing (e.g. Figures 2(b), 12, and 1(b)),
though it is linearly stable. In short, we find that our initial, linearly
unstable PV profiles equilibrate far from their monotonically re-
arranged profiles. This is not inconsistent with Dritschel (1988a),
which simply proves that the re-arranged profile provides an
upper bound on any instability. Equilibration can occur before
this upper bound is reached.

A somewhat similar approach of combining basic conservation
laws with assumptions on the mixing of PV in the equilibrated
flow was used by Esler (2008) to study the equilibration of a
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two-layer β-plane channel model, though he used energy instead
of wave activity conservation (in addition to a constraint on
potential energy which is irrelevant to the barotropic problem).
In our problem, since we are not predicting the actual zonal-
mean flow and wave structure, but rather a hypothetical mean
flow and an idealized PV interface wave, we replace the turbulent
mixed region south of the main PV interface by a second,
weaker PV interface. This greatly simplifies the wave activity
conservation relation, which makes it much easier to use
than energy conservation. Our main purpose, we emphasize,
has been to elucidate general characteristics of nonlinear
flow equilibration by means of the simplest relevant physical
model.

The idealized flow studied in this article has allowed a detailed
study of various other processes related to the growth and
saturation of barotropic instability, including the underlying
mechanisms of wave growth, scale cascade, vortex drift, vortex
shearing, PV mixing, staircase formation, and the stabilizing
role of adverse shear. The original motivation for this work was
to better understand the process of zonal acceleration by PV
mixing (leading to jet sharpening), when the waves are internally
generated by the barotropic instability mechanism, rather than
externally imposed as in Dritschel and Scott (2010). In fact, we
have found barotropic instability to be an inefficient mechanism
for jet sharpening. This instability typically leads to a zonal
flow deceleration. This is primarily due to the initial strong
deceleration caused by eddy growth, during which the PV flux is
predominantly down-gradient. Up-gradient flux still occurs on
the flanks of the jet, mainly on the northern flank, resulting in
local jet sharpening (enhanced PV gradients), but rarely enough
to counteract the deceleration occurring in the initial stages of
barotropic instability.

A central feature of our runs is the dominance of waves. This
results in a highly inhomogeneous structure of the enstrophy
cascade; while we find enstrophy to cascade predominantly
downscale through filamentation, as in classical homogeneous
two-dimensional turbulence, part of the enstrophy remains
trapped in the wavy jet and cascades upscale, along with EKE.
The waves themselves on the jet are induced by the anticyclonic
eddies formed in the initial instability stages. These eddies drift
southwards, interact, shed PV, and eventually get sheared out
completely in most cases, leaving a well-mixed, stable mean PV
structure with waves.

An important feature allowing this wave dominance is the
persistence throughout the integrations of a mean PV gradient
which cannot be broken down by the flow instability, but is rather
reshaped by it. This differs strongly from the classical Rayleigh
problem where the vortex strip breaks into vortices which interact
and spread limitlessly into the flow domain, with no background
gradient to hold them back. In our model problem, and the
related one studied by Nielsen and Schoeberl (1984), a very
different evolution takes place in which waves play a much
more important role, to the extent that linear theory guides the
course of the flow evolution at all times, even at later evolution
stages when the flow equilibrates (and stabilizes). Nonlinearity
does the work of modifying the background state upon which
the waves propagate. In particular, the dominant length-scales
which emerge are tightly controlled by the linear instability of
the instantaneous zonal mean flow, even though the mean flow
itself changes only through nonlinear interactions. Arguably,
this behaviour is more generally applicable wherever mean-flow
gradients persist through instability‡.

In closing, a unique aspect of our study is the application
and validation of a new, simple theoretical model to a very

‡For example, in the Holmboe problem, instability arises from the interaction
of a vorticity wave on a shear-generated vorticity gradient, with a gravity wave
on a nearby density interface (Umurhan and Heifetz, 2007). In analogy to
our problem, we expect the gravity interface to survive the instability, and the
gravity waves arising on it to organize the flow during the nonlinear evolution.

wide range of barotropically unstable PV profiles. Given the
various simplifications and assumptions made, the ability of
the theoretical model to predict the dependence of the fully
nonlinear equilibrated state on the initial flow parameters is
particularly remarkable. In future work, we will address the effect
of a finite Rossby deformation length, and of a background mean
shear. Additionally, we are currently generalizing this study to
a more realistic two-layer system to examine the competition
between barotropic and baroclinic instability, as well as their
equilibration.

Appendix A

The numerical method

The numerical simulations were performed using the Combined
Lagrangian Advection Method (CLAM, Dritschel and Fontane
(2010)), a highly accurate hybrid method based on contour
advection (Dritschel and Ambaum, 1997) and standard pseudo-
spectral techniques. The method achieves high accuracy by
representing advected tracers, here the PV, principally as (grid-
free) material contours down to scales as small as a sixteenth of
the basic ‘inversion’ grid size. The inversion grid is used to invert
Laplace’s operator in Eq. (2) and obtain the velocity in Eq. (3).
The PV contours move through the grid, obtaining their velocity
as needed by interpolation. Dissipation is carried out by ‘contour
surgery’, which removes thin filaments and joins close contours
of the same PV level. This greatly reduces the effective dissipation
compared to other standard methods (Dritschel and Scott, 2009,
provide a recent comparison).

The simulations all use a basic inversion grid of dimensions
1024 in x and 256 in y, corresponding to 3.2 grid points across the
anticyclonic zone (whose width is fixed at w = Ly/40 = π/80).
Even half of this resolution in each direction is adequate to
resolve the flow evolution in detail, but the higher resolution
used here improves the calculation of various diagnostics,
described below. To induce instability, a small perturbation is
added to the ‘latitude’ y2 of the central jump. For each x grid
point xi, first a random displacement ηi ∈ [−1, 1] is generated.
This is then spread by applying 400 1–2–1 local averages:
(ηi−1 + 2ηi + ηi+1)/4 �→ ηi. This correlates the perturbation
over approximately 20 grid lengths in x (of the 1024). Finally,
the ηi are scaled so that max|ηi| = 0.1w. This procedure results
in a random long-wave disturbance having a much larger scale
than the primary modes of instability. Nonlinear interactions
subsequently generate shorter waves, exciting instability–without
enforcing a single scale–thereby enabling secondary instabilities
and so on. The main features occurring in the time evolution, as
well as the flow equilibration, are not sensitive to the details of
the initial disturbance.

The piecewise-uniform gridded PV field is then constructed
on an ultra-fine grid (16 times finer than the inversion grid) in
y. This is then averaged back to the inversion grid by successive
1–2–1 averages (Dritschel and Ambaum, 1997), resulting in a
slightly smoothed PV distribution. This smoothed distribution is
then contoured using a fast contouring algorithm (Dritschel and
Ambaum, 2006). Here, one needs to specify a fixed contouring
interval δq, and in this study we have chosen δq = �q0/16, so
that each jump in the double jet is represented by 16 contours.
One might wonder why a single contour is not sufficient.
The reason is that mixing following Rossby-wave breaking is
poorly represented by a single contour; the numerical method
(CLAM) is designed to accurately represent this mixing by using
many contours and co-evolving a pair of gridded PV fields on
the inversion grid that compensate for contour dissipation, as
discussed in detail in Fontane and Dritschel (2009) and Dritschel
and Fontane (2010). The remaining numerical parameters are
those set out in Fontane and Dritschel (2009), who resolved all
parameter interdependencies, in particular the dependence of
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contour resolution on the grid resolution. CLAM uses a fourth-
order Runge–Kutta time-stepping scheme with an adaptive
time step �t chosen to ensure both max|q′|�t < π/10 and
max|u|�t/�x < 0.7, the latter CFL condition required in the
pseudo-spectral part of the code.

Appendix B

Derivation of Eq. (11)

The domain-integrated energy per unit zonal wavelength can be
written as

‖EKE‖ = − 1

2λ

∫ ∞

y=−∞

∫ λ

x=0
ψq dx dy . (B1)

For a single vorticity jump interface, ∂q/∂y = �q δ(y − y1j), and
the linearization of Eq. (2) yields

q = ∇2ψ = −η�q δ(y − y1j) . (B2)

Hence, for a wave-like solution of the form η = A(t)ei{kx+ε(t)},
the open-domain Green function satisfies

∇2G(y, y1j) = −k2G + ∂2G

∂y2
= −e−k|y−y1j|

2k
, (B3)

so that

ψ = �q

2k
e−k|y−y1j|η . (B4)

Substituting Eqs (B2) and (B4) back into Eq. (B1), noting that
�q = 2�q0 gives

‖EKE‖1j = (2�q0)2η2

4k

∫ ∞

y=−∞
e−k|y−y1j|δ(y − y1j) dy

= (2�q0)2η2

4k
, (B5)

which is Eq. (11).

Appendix C

Calculation of �yc from linear stability

In our theoretical model presented in section 5.1, we explained
that linear stability may be used to estimate the width of
the mixed zone �ym = �yc between ysem ≡ ym − �ym/2 and
yint ≡ ym + �ym/2 in our idealized reference state (Figure 1(b)),
consisting of three uniform regions of PV, q = q1, q1 − �qm

and q1 + 2�q0, where �qm = γ w�q0/�ym from Eq. (14). The
stability analysis is straightforward: one displaces the undisturbed
interfaces at y = ysem and yint by infinitesimal perturbations
ηsem and ηint proportional to exp{i(kx − σ t)} where k is the
wavenumber and σ is the frequency (the imaginary part giving
the growth rate). Using the fact that each interface is material
(Dη/Dt = v) yields a pair of algebraic equations

i{ku(ysem) − σ } η̂sem = v̂(ysem), (C1)

i{ku(yint) − σ } η̂int = v̂(yint), (C2)

where hats are used on the complex amplitudes of the fields (i.e.
stripped of the exp{i(kx − σ t)} phase factor, which cancels in the
linearized equations). The mean zonal velocities are given by

u(ysem) = 1

2
βy2

sem − q1ysem, (C3)

u(yint) = 1

2
βy2

int − q2yint + �qmysem, (C4)

where q2 ≡ q1 − �qm. The remaining algebraic equations are
found from applying continuity of velocity at the interfaces and
requiring v = 0 at the domain edges, y = 0 and Ly. Continuity
of the zonal velocity at the perturbed interfaces yields, after
linearization and cancellation of the phase factor,

−�qm η̂sem = [̂u](ysem), (C5)

(2�q0 + �qm) η̂int = [̂u](yint), (C6)

where [f ](y) denotes the jump in a quantity f crossing y =
constant from below. Finally, the forms of û(y) and v̂(y) are
obtained by solving Laplace’s equation d2ψ̂/dy2 − k2ψ̂ = 0 in
each of the three uniform PV regions, matching ψ̂ across each
undisturbed interface (this is equivalent to matching v̂ since
v̂ = ikψ̂ and here we consider only k > 0), and requiring
ψ̂ = 0 at the domain edges (details omitted). Note that
û = −dψ̂/dy.

The algebraic equations obtained have a non-trivial solution
only if σ takes one of two (eigen)values:

σ = a11+a22 ±
√

(a11+ a22)2+4(a12a21− a11a22)

2
, (C7)

where

a11 = u(ysem) + s1

(
b0eκysem − b2e−κysem

)
, (C8)

a22 = u(yint) − b1s2

(
eκyint − e−κyint

)
, (C9)

a12 = −b1s2

(
eκysem − e−κysem

)
, (C10)

a21 = s1

(
b0eκyint − b2e−κyint

)
, (C11)

where

κ ≡ kLy, s1 = −�qm sinh(κysem)/κ ,

s2 = (2�q0 + �qm) sinh(κ(Ly − yint))/κ ,

b0 = (e2κ − 1)−1, b1 = b0eκ and b2 = b0e2κ .

If the expression inside the square root for σ is negative, the flow
is unstable, and the growth rate is given by the imaginary part of
σ , denoted σi (the positive sign corresponding to growth, and the
negative sign corresponding to decay).

The objective of this analysis is to determine the smallest
width of the mixed zone, �ym = �yc, for which the flow is
stable for all permissible wavenumbers k (here positive integer
values). This requires finding the marginal stability boundary,
namely where (a11 + a22)2 + 4(a12a21 − a11a22) = 0, for each k.
We have chosen to fix yint = (Ly + w)/2 (the original location of
the positive PV jumps for a zero gap width; Figure 1(b)), since
the mean location of yint is not observed to shift significantly in
any of our 60 model runs. We then increased �ym progressively
from w (as in the original set-up) until marginal stability is
found at �ym = �yc. Figure C1 shows the typical behaviour
of the growth rate σi (scaled by �q0, Figure C1(a)) and the
most unstable wavenumber k (the number of waves which fit
into the domain, Figure C1(b)), as a function of the mixed
region width, for the case γ = 1 and β̂ = 0.1. A difficulty
is that the margin of stability is generally not unique. To
circumvent this, we have instead defined marginal stability to be
the point where σi = σmin, a small fraction of �q0, since typically
very weak growth rates are insufficient to produce nonlinear
disruption of the flow. In the results reported, we have used
σmin = 0.01�q0 (horizontal dashed line in Figure C1(a)). This
would place the margin of stability at ysem = 0.1815Ly, with a
zonal wavenumber 5 (marked by circles in Figure C1) in this case.
Other choices for the stability margin yield qualitatively similar
results.
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Figure C1. (a) The maximum growth rate (scaled by �q0) and (b) the most unstable zonal wave (number of waves which fit the zonal domain), as a function of the
mixed region width (scaled by Ly = π/2). The dashed line in (a) marks our chosen stability threshold (0.01�q0). The circles mark the marginally unstable case (the
largest �ym for which the growth rate equals the threshold value).
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