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ABSTRACT

The linear instability of a piecewise uniform shear flow is classically formulated for nondivergent per-

turbations on a 2D barotropic mean flow with linear shear, bounded on both sides by semi-infinite half-planes

where the mean flows are uniform. The problem remains unchanged on the f plane because for nondivergent

perturbations the instability is driven by vorticity gradient at the edges of the inner, linear shear region,

whereas the vorticity itself does not affect it. The instability of the unbounded case is recovered when the

outer regions of uniform velocity are bounded, provided that these regions are at least twice as wide as the

inner region of nonzero shear. The numerical calculations demonstrate that this simple scenario is greatly

modified when the perturbations’ divergence and the variation of the mean height (which geostrophically

balances the mean flow) are retained in the governing equations. Although a finite deformation radius exists

on the shallow water f plane, the mean vorticity gradient that governs the instability in the nondivergent case

remains unchanged, so it is not obvious how the instability is modified by the inclusion of divergence in the

numerical solutions of the equations. The results here show that the longwave instability of nondivergent

flows is recovered by the numerical solution for divergent flows only when the radius of deformation is at

least one order of magnitude larger than the width of the inner uniform shear region. Nevertheless, even at

this large radius of deformation both the amplitude of the velocity eigenfunction and the distribution of

vorticity and divergence differ significantly from those of nondivergent perturbations and vary strongly in the

cross-stream direction. Whereas for nondivergent flows the vorticity and divergence both have a delta-

function structure located at the boundaries of the inner region, in divergent flows they are spread out and

attain their maximum away from the boundaries (either in the inner region or in the outer regions) in some

range of the mean shear. In contrast to nondivergent flows for which the mean shear is merely a multiplicative

factor of the growth rates, in divergent flows new unstable modes exist for sufficiently large mean shear with

no shortwave cutoff. This unstable mode is strongly affected by the sign of the mean shear (i.e., the sign of the

mean relative vorticity).

1. Introduction

Mean flows with uniform shear on an infinite plane

constitute a prime example of a stable flow, as can be

easily shown by studying the corresponding Rayleigh

equation. The obvious reason for this is that the mean

vorticity gradient in such mean flows vanishes, so it

cannot satisfy the ‘‘inflection point’’ necessary condition

for instability that requires the mean vorticity gradient

to change sign somewhere in the domain (Pedlosky

1987). The stability of these flows is easily demonstrated

for nondivergent, small-amplitude perturbations for which

the vorticity vanishes so that its evolution equation re-

duces to Laplace’s equation for the streamfunction c

(see, e.g., Cushman-Roisin 1994):
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=2c 5 0. (1.1)

The addition of uniform rotation to the dynamics does

not alter Eq. (1.1) because the mean vorticity gradient

remains zero. However, when the shear zone is bounded

by two half-planes where the velocity is uniform (see

Fig. 1), instabilities arise from the discontinuity of the

mean flow’s shear (U0/L), which results in a jump con-

dition for the perturbations’ tangential velocity. The

mean vorticity gradient is concentrated in two d func-

tions with opposite sign at the edges of the shear zone so

that Rayleigh instability criterion is satisfied at these

points. The unstable modes result from the far-field

(action at a distance) interaction between two coun-

terpropagating Rossby vorticity edge waves that are

phase-locked in a growing configuration (e.g., Heifetz

et al. 1999).

It should be noted that the continuous spectrum is

filtered out in the derivation of Eq. (1.1) (see Case 1960)

so transient temporal growth of the perturbations (Farrell

1988) is not possible.

Solving Eq. (1.1) for a wave in x and t [so c ; ei(kx2Ct)]

yields exponential variation of c(y), which decays ex-

ponentially in the two outer regions and is a combina-

tion of sinh(ky) and cosh(ky) in the inner region. The

jump condition of u 5 2dc/dy at the boundaries y 5

6L (which introduces explicit time variation into the

problem) yields the dispersion relation (see Cushman-

Roisin 1994; Drazin and Reid 1981):

kCL

U
0

� �2

5
1

2
� kL

� �2

� 1

4
e�4kL. (1.2)

The phase speed C in this dispersion relation is imagi-

nary for 0 , kL , 0.639 and the maximal growth rate of

kLCi/U0 5 0.2 is located at kL 5 0.4. The graph of

kC(k) in this nondivergent (ND) case is shown in the

solid curve of Fig. 2. It is clear from Eq. (1.2) that the

mean shear v (5 U0/L) multiplies the growth rate curve

kC(k) but does not alter its shape.

When the outer regions are bounded and do not

extend to infinity (i.e., U is uniform in the two outer

regions L , |y| , NL, where N . 1 is an arbitrary

number), the solutions in these regions are given by

linear combinations of sinh(ky) and cosh(ky). A straight-

forward analysis of the resulting complicated expres-

sion for the phase speed (Drazin and Reid 1981, sec-

tion 23) shows that the perturbations are unstable for

N . 2.

The above results were derived for nondivergent

perturbations where both the mean velocity and the

perturbation velocity are decoupled from the height

field and the pressure that forces the velocity is applied

(in an undetermined way) by a ‘‘rigid lid’’ that is as-

sumed to overlie the fluid. The relevance of non-

divergent theories to divergent flows is not obvious,

and an example in which it could be convincingly

demonstrated that divergent instabilities do not con-

stitute regular limits of the associated nondivergent

instabilities is the zonal cos2 jet. This jet is the primary

example of barotropic instability theory studied by Kuo

(1973) but, as shown by Paldor and Dvorkin (2006),

the shortwave cutoff that typifies the nondivergent the-

ory is completely absent in the divergent case. This

addition of horizontal divergence of the horizontal

velocity implies that the pressure is determined hy-

drostatically by the fluid height (instead of being ap-

plied by the rigid lid), which varies in time in response

to the divergence of the horizontal velocity. As for the

equations themselves (and not their solutions) Paldor

(2008) has shown that in the absence of a mean flow, the

nondivergent equations constitute a regular limit of the

associated divergent equations when the mean height

becomes large, but only for very specific scaling of the

variables.

In the absence of rotation, the effect of divergence on

the type of dominant instability was demonstrated by

Satomura (1981) and Balmforth (1999), who showed that

an increase of the Froude number leads to the appearance

of a gravity wave critical level instability (designated by

Satomura as ‘‘super-sonic’’ instability) over Rossby-wave

Rayleigh inflectional instability. As was pointed out

above, in the nondivergent case of the piecewise linear

shear of Fig. 1 the inflectional instability is the only source

for modal growth, regardless of whether or not rotation

is included. Hence, here we consider this simple setup

FIG. 1. The flow with piecewise uniform shear. In Rayleigh’s

classical (unbounded) theory the inner region (2L , y , L) where

U(y) 5 yU0/L is imbedded within two outer half-planes in which

U(y) 5 U0. In the finite case, two walls are placed in the outer

regions at y 5 6NL (N . 1).
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to combine the various elements discussed by Satomura

(1981), Balmforth (1999), and Paldor (2008).

For unstable flows it is demonstrated that the addi-

tion of divergence limits the wavenumber range of in-

stability and reduces the maximal growth rate. In ro-

tating, quasigeostrophic (QG) flows, Pratt and Pedlosky

(1991) showed that for velocity disturbances that are in

geostrophic (but time-dependent) balance with the hy-

drostatic pressure, the Rayleigh instability prevails and

its growth rate curve is qualitatively similar to that of

the ND curve of Fig. 2.

Numerous observations of growing perturbations in

the ocean were interpreted in terms of shear instability

(e.g., Send 1989; Feng and Wijffels 2002), which high-

lights the crucial role played by this instability in time-

dependent flows. The focus of this study is on normal

mode analysis and not on transient instability (Farrell

1988). As we shall see, the relation between the diver-

gent and nondivergent instabilities is not simple and

depends on the wavenumber.

2. Formulation of the problem

Because our aim is to compare the Rayleigh insta-

bility in divergent and nondivergent flows, we formulate

the mathematical problem so as to maintain the same

set of equations in both cases. Accordingly, consider a

mean zonal flow U(y) on the f plane that has uniform

shear in the intermediate region 2L , y , L, which is

embedded in a longitudinal channel of width 2NL

(where the value of the number N . 1 is yet to be de-

termined). The unperturbed (mean) velocity distribu-

tion in the channel is given by

U(y) 5

�vL, �NL # y ,�L

vy, �L # y , L

vL, L # y # NL

8><
>: ,

dU

dy
5

0, �NL # y ,�L
v, �L # y , L
0, L # y # NL

8<
: , (2.1)

where v is a frequency representing the shear of U(y) in

the intermediate region (see Fig. 1).

The momentum and continuity equations of the

shallow water model are

›(U 1 u)

›t
1 (U 1 u)

›(U 1 u)

›x
1 y

›(U 1 u)

›y

� f y 1 g
›(H 1 h)

›x
5 0,

(2.2a)

›y

›t
1 (U 1 u)

›y

›x
1 f (U 1 u) 1 g

›(H 1 h)

›y
5 0,

(2.2b)

›(H 1 h)

›t
1

›

›x
[(H 1 h)(U 1 u)] 1

›

›y
[(H 1 h)y] 5 0,

(2.2c)

where u(x, y, t) and y(x, y, t) are the perturbation velocity

components in the east x and north y directions, respec-

tively; f is the Coriolis parameter; g is the (reduced)

gravity; H(y) is the mean height of the layer of fluid; and

h(x, y) is the perturbation’s height. The lowest-order terms

(i.e., zeroth-order terms in the perturbations’ amplitude)

in Eq. (2.2b) yield the geostrophic balance,

FIG. 2. Growth rate curves for ND and for the divergent perturbations with a 5 100, v 5 1. The

ND growth rates are very close to the divergent ones at these values of a and v.
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fU 5�g
›H

›y
, (2.3)

which implies that the height profile corresponding to

the mean velocity (2.1) is

H(y) 5

H
0

1
f

g
vL

L

2
1 y

� �
, �NL # y ,�L

H
0
� f

g
v

y2

2
, �L # y , L

H
0

1
f

g
vL

L

2
� y

� �
, L # y # NL

8>>>>>><
>>>>>>:

,

(2.4)

›H

›y
5

f

g
vL, �NL # y ,�L

� f

g
vy, �L # y , L

� f

g
vL, L # y # NL

8>>>>>><
>>>>>>:

,

where H0 5 H(y 5 0) is the largest value of H(y).

Linearization of system (2.2) yields

›u

›t
1 U

›u

›x
1 y

›U

›y
� f y 1 g

›h

›x
5 0, (2.5a)

›y

›t
1 U

›y

›x
1 fu 1 g

›h

›y
5 0, (2.5b)

›h

›t
1 U

›h

›x
1 H

›u

›x
1

›y

›y

� �
1 y

›H

›y
5 0. (2.5c)

We look for zonally propagating wave solutions

(u, y, h) 5 [u*(y), y*(y), h*(y)]eik(x2Ct) (where C is the

wave’s phase speed and k is its wavenumber, so its

frequency is kC) for which system (2.5) implies that

(dropping the asterisks from the amplitudes)

u(U � C) 1 (U
y
� f )V 1 gh 5 0, (2.6a)

�V(U � C)k2 1 fu 1 gh
y

5 0, (2.6b)

h(U � C) 1 H(u 1 V
y
) 1 H

y
V 5 0, (2.6c)

where the subscript y means differentiation with respect

to y and where

V 5
y

ik
5�iy

k
. (2.7)

Using Eq. (2.6a) to eliminate h from (2.6b) and (2.6c),

we get the second-order differential system for (u, V):

u
y

5
( f �U

y
)(U � C)

gH
u

�
U

yy

U � C
1 k2 1

( f �U
y
)2

gH
1

H
y

H

f �U
y

U � C

#
V,

"

(2.8a)

V
y

5
(U � C)2

gH
� 1

" #
u�

(U � C)(f �U
y
)

gH
1

H
y

H

" #
V.

(2.8b)

To reduce the number of parameters in the problem, we

nondimensionalize Eqs. (2.8) using L as the length scale

of the x and y coordinates and 1/f as the time scale, so

the velocity scale is fL (and the scale for V ; y/k is fL2).

For the height scale we use H0 (the unperturbed fluid

height at y 5 0) and these scales yield the nondimen-

sional counterpart of system (2.8):

u
y

5
(U � C)(1�U

y
)

aH
u

� k2 1
U

yy

U � C
1

(1�U
y
)2

aH
1

1�U
y

U � C

H
y

H

" #
V,

(2.9a)

V
y

5
(U � C)2

aH
� 1

" #
u�

(U � C)(1�U
y
)

aH
1

H
y

H

" #
V,

(2.9b)

where a 5 gH0/f 2L2 is the square of the nondimen-

sional speed of gravity waves (i.e., the Burger number

and the inverse of Lamb’s number). The nondimensional

form of the mean state equations [(2.1) and (2.4)] is

U(y) 5

�v,

vy,

v,

8><
>:

�N # y #�1

�1 # y # 1

1 # y # N

;

H(y) 5

1 1
v

2a
(1 1 2y),

1� v

2a
y2,

1 1
v

2a
(1� 2y),

8>>>><
>>>>:

�N # y #�1

�1 # y # 1

1 # y # N

; (2.10)

›U

›y
5

0,

v,

0,

8><
>:

�N , y ,�1

�1 , y , 1

1 , y , N

;

›H

›y
5

v

a
,

�v

a
y,

�v

a
,

8>>>><
>>>>:

�N # y #�1

�1 # y # 1

1 # y # N

.

[Note that hereafter v denotes the nondimensional

shear—that is, the dimensional shear U0 /L, divided by

f so v is also the Rossby number U0 /( fL)—whereas

both u(y) and V(y) denote the y-dependent, nondi-

mensional amplitudes of the two velocity components.]
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The condition H(y) . 0 for all y, including the walls

(y 5 6N), is trivially satisfied for all v , 0 and translates

into the constraint

1 1
v

2a
(1� 2N) . 0 0 N ,

1

2
1

a

v
, for v . 0.

(2.11)

At the boundaries of the inner zone, y 5 61, the normal

velocity (and thus V, too) must be continuous, whereas

the tangential velocity u has to undergo the following

jump to ensure the continuity of h [due to the jump in

Uy; see Eq. (2.6)]:

u�11«
5 u�1�«

� v
V

U � C

����
y5�1

;

u
11«

5 u
1�«

1 v
V

U � C

����
y51

. (2.12)

The boundary conditions at the two walls are the

vanishing of the normal velocity component there,

V(y 5 6N) 5 0. As an arbitrary normalization of the

problem we choose u(y) 5 1 at either of the two walls;

thus, if we choose u(y 5 2NL) 5 1, the boundary

conditions at y 5 6NL are

V(y 5 6NL) 5 0; u(y 5�NL) 5 1. (2.13)

Unstable solutions of system (2.9) subject to the bound-

ary conditions (2.13) [and with the jump conditions

(2.12)] have a nonvanishing imaginary part of the phase

speed; that is, Ci 6¼ 0 when C 5 Cr 1 iCi. Before turning

to these unstable solutions of system (2.9), we note that

with the above scaling, the nondivergent case is ob-

tained formally from (2.9) by setting H21 5 0. Dropping

all terms with H in the denominator, letting Uyy 5 0 in

all three regions [see U(y) in (2.10)], and separating

u and V between Eqs. (2.9a) and (2.9b) yields uyy 5

k2u and Vyy 5 k2V. This is precisely the right form of

Laplace’s equation [given in the nondivergent case by

Eq. (1.1)] for the assumed wavelike solutions of u and

V in x: eikx. It should also be stressed that V is the

streamfunction because the actual velocities are related

to it via u 5 2dV/dy and y 5 ikV 5 dV/dx. Because

V(y) 5 e6ky, regularity mandates that for k2 . 0, V van-

ishes at y 5 6‘, so we require that V(y 5 6N) 5 0 for

sufficiently large N.

3. Method of solution

The dispersion relations of the unstable modes were

calculated by integrating (a fifth-order Runge–Kutta

scheme with 10210 tolerance was used to ensure accu-

racy) system (2.9) from one of the walls (say y 5 2N),

starting with the initial conditions V 5 0 and u 5 1, to

the southern boundary of the shear zone, y 5 21. The

continuity of V and the jump condition for u, Eq. (2.12),

were then applied to cross to the intermediate shear

zone at y . 21 and system (2.9) was integrated through

the shear zone to the northern boundary of the shear

zone, y 5 11, where the same conditions of continuity

of V and jump of u, Eq. (2.12), were applied again to

cross to the northern outer region, y . 11. The inte-

gration of system (2.9) then proceeded from y 5 11 to

the northern wall, y 5 1N, and the value V was re-

corded. The value of C 5 Cr 1 iCi was changed to find

the values for which V(y 5 1N) 5 0. Many (complex as

well as real) values of C were found in this way for any

given values of k and a, but only the one with maximal

Ci is reported here. The determination of the maximal

value of kCi for a given value of k follows an involved

numerical search that uses both initial guesses from the

prior k value and independent searches that begin from

nine other pairs of (Cr, Ci) values. From each initial

guess, the search employs a two-dimensional minimi-

zation algorithm that finds the simultaneous zeros of

Re[V(y 5 N; Cr, Ci)] and Im[V(y 5 N; Cr, Ci)].

At large values of k and small values of a the varia-

tion of the eigenfunctions with y turned out to be too

rapid and the growing exponential in the outer regions

dominated the solutions, which made the numerical

search for C extremely sensitive. In such cases two in-

tegrations of Eqs. (2.9) were initiated, each from one of

the two walls, and the condition that determined C was

the continuity of these two solutions at y 5 0. At in-

termediate values of k and a, the two methods of direct

integration from one wall to the other (requiring V to

vanish at the other wall) and integrating from either of

the walls to y 5 0 (requiring the V and u solutions to be

continuous at y 5 0) resulted in the same values of C.

FIG. 3. The u(y), V(y) eigenfunctions for the ND case at k 5 0.5.

The vorticity, divergence, and height all vanish identically every-

where including the transition points y 5 61 (graphs not shown)

because of the particular method of solution we use. The expo-

nential decay in the two outer regions is expected from the ana-

lytical solutions in the unbounded case.
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The solutions of the nondivergent case were calcu-

lated by letting H21 5 0 (i.e., setting to zero all terms

with H in the denominator) as well as Uyy 5 0 in the

coefficients of system (2.9). Analytically, this proce-

dure yields exactly Laplace’s Eq. (1.1) for V ([ c be-

cause y 5 ikV).

The meridional structures of vorticity z and diver-

gence d were calculated from the solutions u(y) and

V(y) [52iy(y)/k] solutions of system (2.9) via the

relations

z 5
›y

›x
� ›u

›y
5�k2V � u

y
, (3.1a)

d 5
›u

›x
1

›y

›y
5 iku 1 ikV

y
5 ik(u 1 V

y
), (3.1b)

while the height structure was calculated from the non-

dimensional counterpart of Eq. (2.6a):

h 5�1

a
[u(U � C) 1 V(U

y
� 1)]. (3.1c)

In the nondivergent case 1/H is set equal to 0, so setting

1/a 5 0 in (3.1c) guarantees that h vanishes at all times,

whereas d and z vanish because of their dynamics.

4. Unstable modes and growth rates

In all the calculations reported below, the value of N

in Eq. (2.13) [i.e., half the region over which system (2.9)

was integrated] was chosen to be 9. This ensures that

the imposition of the condition V(y 5 6N) 5 0 filters

out the exponentially growing V(y) from the solution in

the outer regions and, as argued in section 1, it is within

the unstable range of the bounded nondivergent case

(N . 2). A numerical reproduction of the analytical

nondivergent dispersion curve of the unstable modes is

shown in Fig. 2 (solid curve designated as ND) along

with the corresponding curve (dashed) of divergent

perturbation for a 5 100 and v 5 1. The numerically

generated ND curve is an exact reproduction of the

theoretical expression (1.2), which confirms both the

accuracy of the numerical method outlined in section 3

FIG. 4. Eigenfunctions for the divergent a 5 100, v 5 1 case at k 5 0.5. Also shown are the fields of height h, nonedge

vorticity z, and divergence d. The vorticity vanishes for 21 , y , 1, as expected for v 5 1. The edge vorticity at y 5 61 is

ignored in the vorticity panel.
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and the validity of our choice of N 5 9 for representing

the unbounded outer regions. A slight difference be-

tween the divergent and nondivergent curves can be

noticed near the cutoff wavenumber k 5 0.639, where

the former extends to slightly larger wavenumbers

(shorter wavelengths) than the latter. The choice of v in

the divergent case (in the nondivergent case it is a trivial

multiplicative factor) follows from condition (2.11),

which ensures that the fluid thickness does not vanish. It

implies that v , a/(N 2 ½) so that for N 5 9.0 it is fully

satisfied by selecting v # a/10, a condition satisfied in all

calculations reported below.

The close similarity between the two curves confirms

that when the radius of deformation, La1/2 5 (gH0)1/2/f,

is large (10 times L, the width of the shear zone), the

divergent instability curve is accurately approximated

by the nondivergent curve. However, the closeness of

the instability curves does not guarantee closeness of

the corresponding eigenfunctions and in particular, the

exponential decay of the nondivergent eigenfunctions in

the outer regions.

Figure 3 shows the u, V eigenfunctions of the non-

divergent flow perturbations. The exponential decay in

the outer regions is quite obvious, as expected from the

analytic solution. The corresponding vorticity and di-

vergence (not shown) both vanish everywhere, includ-

ing at y 5 61 because our method of solution does not

capture the vorticity d-function structure there. In con-

trast, Fig. 4 shows the corresponding eigenfunctions,

as well as vorticity and divergence, for the divergent

flow, from which it is evident that even though the u(y),

V(y) fields are very similar to those of nondivergent

flows, the vorticity and divergence are maximal at the

transition points, where their values are small compared

to, say, ku or kV, but they do not vanish at y 6¼ 61. We

should emphasize that because the u(y) and V(y) fields

are not calculated at y 5 61, the vorticity field z shown

in Fig. 4 (and in Figs. 6, 7, 9, 12 below) represents only

the nonedge vorticity, whereas the edge d-function vor-

ticity associated with the jump discontinuity of Uyy at

y 5 61 is not captured by our solution.

The separate effects of changing v and decreasing a

(called shear effects and radius-of-deformation effects,

respectively) are studied next by changing the value of

one of them and examining the resulting effects on the

eigenfunctions and vorticity/divergence fields.

FIG. 5. Shear effects for a 5 100 and v 5 0.01, 0.1, 1.0, and 10.0. The new shear mode at v 5 10

does not have a shortwave cutoff at O(1) wavenumber and its maximal growth rate is only a bit

smaller than that of the low shear (and ND) modes. Note that the growth rate curves for v 5 0.1

and v 5 0.01 can hardly be distinguished from one another and that their maximal scaled growth

rate is actually smaller than for v 5 1. The (top) jumps in the kCi curves are correlated with the

(bottom) jumps in Cr.
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a. Shear (Rossby number) effects

For nondivergent flows, Eq. (1.2) affirms that chang-

ing the mean shear v 5 U0/(fL) (which is also a Rossby

number of the mean flow) only changes the magnitude

of the growth rate curve but not its k dependence. To

conform to the ND independence on v, all growth rate

curves in the figures of this study show kCi/v as a

function of k, so the direct v effect on the amplitude is

filtered out. At values of v other than 1.0, the growth

rate curves of Fig. 2 are modified into those shown in

Fig. 5, where the value of a is set to 100 in all cases. For

values of v # 1, the growth rate curves differ only

slightly modified from those of ND, and the normalized

growth rates increases very slightly with v (the dotted

v 5 1 curve is slightly above the two v , 1 curves). We

note that although these results are natural in the qua-

sigeostrophic theory (large radius of deformation and

Rossby number smaller than 1), the streamfunction in

the QG theory is the height, that is, V 5 ah in our

notation, which is not the case here as is evident from

Fig. 4 (see also Fig. 6).

In contrast, for v 5 10 a new mode of instability can

be clearly noticed in the growth rate curves; it does not

have a shortwave cutoff and its maximal growth rate

(divided by v) is about half that of the other cases. The

lower panel in Fig. 5 shows that the different lobes of

this high-shear instability are associated with coales-

cence of different real-mode modes as in Paldor and

Ghil (1991). The corresponding eigenfunctions shown in

Fig. 6 for v 5 0.01 (and k 5 0.5) are also fairly similar to

those of the v 5 1 eigenfunctions (see Fig. 4) and the

same is true for the height, vorticity, and divergence

fields (see Fig. 4). In agreement with the drastic change

in growth rate curves, the eigenfunctions of the new

mode, shown in Fig. 7, differ significantly from those

of the former cases—they do not decay to zero in the

outer regions and the vorticity and divergence associ-

ated with this unstable mode do not attain their maxi-

mal values near the transition points y 5 61. A possible

FIG. 6. The eigenfunctions at a 5 100 and k 5 0.5 of the low shear mode: v 5 0.01. The u(y) and V(y) eigenfunctions are

similar (in both inner and outer regions) to those at v 5 1 (see Fig. 4). However, the height, nonedge vorticity, and

divergence are quite different than those at v 5 1: the divergence does not cross zero, the nonedge vorticity is maximal

inside the inner region (and not at y 5 61), and the height is real at y , 21.
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interpretation of these large Rossby number modes is

given in the discussion and summary section.

b. Radius of deformation effects

For the large value of a 5 100 studied in the previous

subsection, the condition (2.11) was satisfied at all

values of 0.01 , v , 10. However, any decrease of the

value of a mandates a decrease in the value of v (e.g.,

v , a/10) to guarantee that condition (2.11) is satisfied.

The growth rate curves shown in Fig. 8 were calculated

for values of a of 0.1, 1.0, 10 and 100, so the (fixed) value

of v was set to 0.01 to ensure that condition (2.11) is

satisfied even at the lowest value of a 5 0.1. As in all

other growth rate curves in this study, the ordinate is

kCi/v to account for the direct multiplicative effect of

v on the growth rates. It is clear from these curves that

the effect of decreasing the radius of deformation (for

fixed shear zone width) is different for long waves and

short waves. Whereas the growth rate curves diminish

with a for long waves, at wavenumbers slightly above the

cutoff (k 5 0.639; i.e., 0.639 , k , 0.7) the growth rates

become nonzero when a gets smaller. The corresponding

changes in the eigenfunctions are summarized in Fig. 9

for a 5 0.1 (so v 5 0.01) and k 5 0.5. The u(y), V(y)

structures are significantly different from those shown in

Fig. 4 and they vary quite abruptly inside the inner, linear

shear region. This sharp variation in the inner region is

strongly reflected in the vorticity that undergoes a double

delta-like flip-flop near y 5 0 (0 , y , 0.02).

c. Cyclonic mean shear

The results shown in the preceding two subsections

are concerned with anticyclonic mean (relative) vortic-

ity: v . 0. In contrast to the nondivergent problem, the

sign of v (as well as its value, as shown above) affects

the solutions in the present divergent problem. The

calculations of section 4a were repeated for negative v

values and we found that (as was the case for the value

of v for v . 0) the longwave, nondivergent instability is

only slightly affected by the change of the sign of v. In

Fig. 10 we compare the growth rate curves for a 5 0.1

and for two values of v 5 10.01 (shown in the a 5 0.1

FIG. 7. The eigenfunctions at a 5 100 and k 5 0.5 for the high shear effect, v 5 10. The effect of the high shear is clear in

structure of u(y) and V(y) eigenfunctions that do not decay to zero in the outer regions while the height, nonedge vorticity,

and divergence are maximal in the outer region.
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curve of Fig. 8) and v 5 20.01. The difference between

the two curves decreases with the increase in a, and at

a 5 100 the difference is smaller than the line width.

However, insofar as the new shortwave mode is con-

cerned the difference between positive and negative v is

more dramatic. Figure 11 shows a comparison between

the growth rate curves for a 5 100; v 5 110 (see the

v 5 10 curve in Fig. 5a) with that for a 5 100; v 5 210.

It is clear from these results that no longwave limit ex-

ists for cyclonic mean shear and that the undulations of

the growth rate curve are slower and smoother than

those for anticyclonic mean shear. As Fig. 12 shows, the

eigenfunctions of this case are also markedly different

from those of v 5 110 shown in Fig. 7.

In contrast to anticyclonic mean shear where small

values of a/jvj—i.e., large values of jvj/a—violate con-

dition (2.11) as the mean height becomes negative at the

walls, for v , 0 H(y) never vanishes in the outer re-

gions; that is, according to the ›H/›y equation in (2.10)

it increases monotonically there with the distance from

the inner region. Therefore, it is not a priori clear if

instabilities exist for, say, a 5 1 and v 5 210 (for which

a positive v counterpart does not exist). Although large

negative mean shears are not the most relevant to

geophysical shear flows (Ford 1994), for completeness

of the analysis we investigate their instability as well.

Our intensive numerical search that uses the exact same

method as in the rest of this study has not yielded

any instability in the cases we have examined: a 5 1 and

v 5 21 and a 5 10 and v 5 210 (in addition to a 5 1

and v 5 210). This intensive search was extended to

wavenumbers larger than 1 (up to k 5 2), but no in-

stabilities were found. A confirmation of our finding

regarding the stable nature of the perturbation at these

values of v and a might be sought in direct numerical

solutions of the initial value problem starting from a

spatially concentrated perturbation. However, this re-

quires one to solve numerically partial differential equa-

tions (PDEs), so the simplicity and accuracy of numerical

solution of linear eigenvalue equations is lost.

5. Discussion and summary

The numerical results presented above reproduce with

high accuracy the analytical results of the unbounded

ND case, which lends credence to our numerical proce-

dure and confirms our choice of N 5 9 as the ‘‘infinity’’

limit of the outer regions.

A comparison between the ND and divergent solutions

shows that the former are accurate approximations of the

latter only when the radius of deformation (La1/2) is at

least one order of magnitude larger than the width of the

linear shear zone (2L) and provided the vorticity of the

mean shear (U0/L) does not exceed the planetary vor-

ticity (f) (i.e., the Rossby number is smaller than 1). We

note that the Froude number is U(gh)21/2 5 va21/2,

which is independent of f and can be less than unity

provided a (the radius of deformation) is large. For small

FIG. 8. Growth rate curves for the radius-of-deformation effect for v 5 0.01 and k 5 0.5 and

for the indicated values of a 5 0.1, 1, 10, and 100 (i.e., v # a/10 even for the lowest value of

a 5 0.1). The decrease in maximal growth rate kCi/v (beyond the scale factor of v) is clearly

evident when a is decreased, along with a slight extension of the shortwave cutoff to higher

wavenumber values.
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deformation radii and for large Rossby numbers (mean

shear significantly larger that the planetary vorticity),

new modes exist that cannot be captured by the ND

dynamics.

The irrelevance of ND instability dynamics to diver-

gent instability is most pronounced for short waves

(k . 0.64) where the solutions of the former problem

are all stable whereas the latter have instabilities that

are comparable to (about half) the longwave ND max-

imum instabilities.

On the other hand, in the v 5 1 case and for suffi-

ciently large deformation radius, the ND theory should

provide a good approximation for divergent perturba-

tions. The reason is that for v 5 1, Fig. 4 shows that

vorticity in the inner region vanishes just as in the

ND case (where it vanishes everywhere). The vorticity

perturbation that has a delta-function distribution at

y 5 61 (which cannot be captured by our numerical

method) in the ND case becomes maximal at these

points for the case shown in Fig. 4. For zonally propa-

gating waves, the vorticity evolution equation (derived

from cross differentiation of the x and y momentum

equations) yields

(U � C)z 5 VU
yy

1 (1�U
y
)(id/k), (5.1)

where the vorticity z and divergence d are defined in

Eq. (3.1). In both the ND and v 5 1 (so 1 2 Uy 5 0 in the

inner region) cases, the divergence (second) term on the

rhs of Eq. (5.1) vanishes in the inner region, so vorticity

can only be generated there by the edge term VUyy

(i.e., by meridional advection of mean vorticity gradient

away from y 5 61). This consideration explains the

vanishing of perturbation vorticity in the inner region

for v 5 1 (Fig. 4) as in the ND case. In contrast, when

v 6¼ 1, significant vorticity is generated in the inner re-

gion (Fig. 6, v 5 0.01; Fig. 7, v 5 10; and Fig. 9, v 5 0.01

where the vorticity is singularly large in this region).

The present study only illuminates some of the subtle

issues encountered when divergence is introduced into

the dynamics. An analysis of the results presented here

must therefore begin by transforming the set (2.5) into

the corresponding set for the perturbation vorticity z,

FIG. 9. The eigenfunctions for small radius of deformation, a 5 0.1, v 5 0.01 (5 a/10), and k 5 0.5. The nonmonotonic

variation of the u(y) and V(y) velocity components is quite obvious in comparison to Fig. 4 and Fig. 6 and the nonedge

vorticity maximum at y 5 0 stands out in comparison to all other cases shown above.
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elevation h, and divergence d. Here we only provide a

rather rudimentary interpretation of the findings of this

work and leave a fuller analysis to future works. The

nondimensional (using the scaling adopted above)

evolution equations for these variables (derived by

taking the divergence and curl of the momentum

equations) are

Dz

Dt
5 v[dy11 � dy�1]y 1 d(U

y
� 1), (5.2a)

Dd

Dt
5 z � 2U

y
y

x
� a=2h, (5.2b)

Dh

Dt
5�Hd 1

U

a
y, (5.2c)

FIG. 10. A comparison between the growth rate curves at v 5 10.01 and v 5 20.01 for a 5

0.1. The instability for cyclonic mean shear is smaller and occupies a narrower wavelength range

than that of anticyclonic mean shear.

FIG. 11. A comparison between the shortwave instability at v 5 110 and v 5 210 for a 5 100.

The main difference between the two is the absence of a longwave branch at v 5 210 and the

slower rate of change of kCi with k for this cyclonic mean shear.
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where the definitions of z, h, and d are given in (3.1) and

where D/Dt 5 ›/›t 1 U›/›x as before.

The terms in the square bracket in (5.2a) that have

d with superscripts y 1 1 and y 2 1 designate the d

function that vanishes everywhere except for y 5 21

and y 5 11, respectively (and whose integral over

the entire real axis is 1), and should not be confused with

the divergence (designated here by d). These terms

result from the discontinuity of the mean vorticity at

y 5 61. The nondivergent case is obtained from (5.2) by

setting d 5 0, in which case the set (5.2) is overdeter-

mined, being a set of three equations for two unknowns

(z and h). However, for a21 5 0 (infinite deformation

radius) Eq. (5.2c) is satisfied by h 5 0 but Eq. (5.2b) is

ill defined because a=2h 5 =2h/a21, which cannot be

evaluated (zero divided by zero). Ignoring these issues

of consistency between the shallow water model (SWM)

and ND dynamics, the latter is fully and solely described

by Eq. (5.2a), which reduces to

Dz

Dt
5 v(dy11 � dy�1)y, (5.3a)

where

z 5 =2c, y 5 c
x
. (5.3b,c)

For this limiting case, Heifetz et al. (1999) showed that

the normal mode dynamics can be fully described in

terms of action-at-a-distance interaction between the

two d-function vorticity waves centered on y 5 61. For

this nondivergent case, the modal growth is enabled by

two edge waves having the same amplitude, but the

phase of the northern wave (the one centered on y 5 11)

is shifted by an angle between 0 and p to the left

(westward) relative to the phase of the southern wave

(the one centered on y 5 21). Each of these edge waves

is a Rossby wave that propagates in the opposite di-

rection to the mean flow at its center (eastward at

y 5 21 and westward at y 5 11) and the speed of the

counterpropagation is proportional to the wavelength.

Modal growth occurs when the phases of two waves

are locked, which for long waves mandates that the

action-at-a-distance interaction hinders their counter-

propagation so the phase shift should be between p/2

FIG. 12. The eigenfunctions for a 5 100, v 5 210, and k 5 0.5, which is the counterpart of those shown in Fig. 7 for

anticyclonic mean shear.
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and p, whereas for short waves the action-at-a-distance

interaction speeds up the counterpropagation so the

phase shift should be between 0 and p/2.

Although the dynamics associated with (5.2) is far

more complex than that of (5.3), it is still affected by

the d-function edge waves, as is evident from the

presence of the dy11 2 dy21 term in (5.2a). In Fig. 13

we compare the variation of the phase shift between

the two vorticity edge waves with wavenumber in the

ND case and in several divergent cases calculated in

section 4 (i.e., the phase shift of the two edge vortic-

ities that were neglected in Figs. 4, 6, 7, 9, and 12). The

phase shift of divergent flows is similar to that of the

ND case, especially at large deformation radius (a 5

100), as long as v # 1, which reflects the overall sim-

ilarity between the instability curves of Fig. 8. In

contrast, at v 5 10 the variation of the phase shift with

wavenumber is nonmonotonic, as is the growth rate

curve in Fig. 5a.

It should be emphasized that these straightforward

vorticity considerations of the interaction between vor-

ticity edge waves do not provide a complete description

of the dynamics. To show this, we derive the evolution

equation for the linearized Ertel potential vorticity

(PV) q 5 z 1 hH21(Uy 2 1) (strictly speaking, the

linearized Ertel PV is qH21), either directly from its

(Lagrangian) conservation or by combining Eqs. (5.2a)

and (5.2c):

Dq

Dt
5 v(dy11 � dy�1) 1

U

aH
(U

y
� 1)

� �
y. (5.4)

Because U(y 5 0) 5 0, the mean PV gradient on the rhs

of this equation vanishes there. Therefore, for growing

modes the PV perturbation vanishes at y 5 0 [i.e.,

q(y 5 0) 5 0] but for v , 1 the vorticity perturbation z is

nonzero and is positively correlated with the displace-

ment perturbation [z 5 (1 2 v)h] there. Positive (cy-

clonic) vorticity circulating positive height anomaly is

an indication or the existence of inertia–gravity waves at

the center of the shear layer that interact with the two

Rossby edge waves. This interaction is eliminated in

ND where the inertia–gravity waves have infinite phase

speed (or infinite radius of deformation). When v 5 1,

Eq. (5.2a) reduces to its ND form (5.3a) within the shear

region so the vorticity vanishes throughout this region.

Therefore, for v 5 1 inertia–gravity waves are practically

eliminated from the vorticity dynamics (see lower right

panel in Fig. 4) and the agreement of the growth rates

with those of the ND theory (Fig. 2) is nearly perfect. In

all cases where the Froude number Fr 5 va21/2 is small,

Fig. 13 indicates that the instability is dominated by the

FIG. 13. Phase difference of vorticity across the shear zone, y 5 11 and y 5 21, as a function of k for the ND case

and for the divergent cases calculated in this study. In all cases with v # 1 the numerical results are close to the

theoretical ND values: between p/2 and p for long waves (k / 0) and between 0 and p/2 for short waves (k / 0.7).

For the large Rossby mode v 5 10 the phase difference is not monotonic with k, in accordance with the instability

curve of Fig. 5.
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interaction between Rossby edge waves. This conclusion

agrees with the results reported by Balmforth (1999) on

the dominance of inflectional instability at small Fr and

extends them to rotating flows. In the cases where Fr is

O(1)(a 5 100, v 5 10), the Cr curve in Fig. 5 shows that

the singular critical level may exist within the shear layer.

Figure 13 and the mode structure (see Figs. 7 and 12)

suggest that the ‘‘super-sonic’’ critical level instability is

governed by inertia–gravity wave interaction, which is

also in agreement with the results of Balmforth (1999) for

nonrotating flows. Thus, in the ND case the piecewise

linear shear profile of Fig. 1 filters out the effects of both

inertia–gravity waves and singular critical levels, leaving

the Rossby inflectional instability as the sole destabilizing

mechanism.

The results presented in this study support the pre-

vious results reported by Paldor and Dvorkin (2006),

who extended numerically the classical barotropic in-

stability theory for ND perturbations on a zonal jet on

the b plane (i.e., Kuo 1973) to divergent perturbations.

Similarly to the findings in the present Rayleigh prob-

lem, in Kuo’s barotropic instability problem the ND

instabilities approximate the divergent quite poorly,

and especially so in the shortwave range where ND

perturbations are stable whereas divergent perturba-

tions have large growth rates. Our results extend to

rotating flows on the f plane the nonrotating results

of Balmforth (1999) and show that even in the small

Froude number regime the instability is affected by the

value of the deformation radius such that when it increases

the growth rates decrease and shift to smaller wave-

lengths (Fig. 8). The nonsmooth supersonic instability at

Fr of order 1 with no shortwave cutoff is similar to the

instability found by Paldor and Ghil (1991) in two-layer

geostrophic coastal fronts for sufficiently fast mean cur-

rents. A deeper analysis should be carried out to unravel

the physics involved with this supersonic instability of the

Rayleigh problem (e.g., overreflection and WKB ex-

pansion in the v 2 1 / 0 limit).
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