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A counterintuitive destabilizing effect of the surface tension in planar wakes has been
observed by Tammisola et al. [“Effect of surface tension on global modes of confined
wake flows,” Phys. Fluids 23, 014108 (2011)] and Biancofiore et al. [“Direct numerical
simulations of two-phase immiscible wakes,” Fluid Dyn. Res. 46, 041409 (2014)]
by means of linear global analyses and direct numerical simulations, respectively.
In the present study, we approximate the velocity profile of a wake flow through a
piecewise broken-line profile and explain the presence of temporal unstable modes
using an interfacial wave interaction perspective. With this perspective, we associate
to each vorticity discontinuity an individual counterpropagating Rossby wave (RW),
while the introduction of a finite amount of surface tension at the interface creates two
capillary waves (CWs) which propagate with respect to the interface velocity with the
same relative velocity but in opposite directions. The addition of the surface tension
generates a new unstable mode, which is a Rossby-capillary mode, since it is due to the
interaction between one RW and one CW. Furthermore, we capture the spatio-temporal
evolution of the interacting four-waves system by means of an impulse response
analysis. The spreading of the wavepacket, and consequently the absolute nature of
the instability, is enhanced by a moderate surface tension, especially if the interface is
located close to the faster edge of the broken-line wake profile. This can be explained
by the influence of the surface tension on the group velocities of the waves, taken in
isolation. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4916285]

I. INTRODUCTION

Surface tension acts as a restoring force which minimizes the contact area between the fluids.
Due to these restoring properties, it is therefore viewed as a stabilizing agent in plane shear flows.
Recently, a counterintuitive destabilisation due to the surface tension was noticed by Tammisola et al.1

in planar wakes by means of global linear analysis. The same authors have extended their analysis
to two-phase jets2 showing the same destabilisation effect. Furthermore, they have found that both
sinuous and varicose perturbations are destabilised by capillary forces. Biancofiore et al.3 confirmed
the destabilising influence of the surface tension in planar wake by means of direct numerical simu-
lations (DNSs), using a level-set formulation for the interface-capturing. However, only the sinuous
mode was found to be destabilised. This surprising destabilisation effect by surface tension is relevant
to technological applications, where two or more co-flowing parallel flow sheets meet and interact
(as in paper making processes4).

Unrelatedly, the concept of counterpropagating Rossby waves (RWs) has been developed origi-
nally by Bretherton5 to explain the baroclinic instability mechanism for cyclone development in the
atmosphere. He showed that the instability in flows featuring two distinct potential vorticity gradients
can be interpreted in terms of the interaction between two distinct Rossby edge waves. Such waves
were coined counterpropagating by Hoskins et al.6 since their propagation direction is opposite to their
local mean flow. Although each wave by itself is neutral, the mutual interaction yields an instability

1070-6631/2015/27(4)/044104/20/$30.00 27, 044104-1 ©2015 AIP Publishing LLC
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through a phase-locking mechanism. Depending on their phase difference, each RW modifies the
propagation rate of the other and also promotes its growth. Growing normal modes are obtained in
a suitable phase difference when the interaction makes the RWs to propagate with the same phase
speed and to have the same growth rate.

More recently, the interaction of these RWs has been implemented by Heifetz et al.7 to describe
the instability in an unconfined inviscid mixing layer of a finite shear layer thickness. Biancofiore and
Gallaire8 further exported the counterpropagating RW concept from the geophysics community to
the fluid mechanics one, as they employed this paradigm to explain the instability in confined plane
wakes in terms of RW interaction. Harnik et al.9 generalized further the RW interaction in a distance
mechanism to interfacial vorticity waves whose propagation mechanism can be different from the
advection of mean vorticity. They showed how the buoyancy restoring force, in stably stratified shear
flow, generates interfacial vorticity waves and how the interaction between such two remote counter-
propagating vorticity buoyancy waves yields instability. This concept has been used by Rabinovich
et al.10 to interpret the counter-intuitive results of how stable stratification may destabilize a shear
flow.11 Moreover, in setups which include both mean vorticity and density gradients (such as the
Holmboe12 one), the instability has been interpreted in terms of action at a distance between Rossby
and buoyancy-driven interfacial vorticity waves.13

In this work, we suggest that in small scales the restoring force of surface tension between two
immiscible fluids can generate as well interfacial vorticity waves. Similar to the buoyancy waves, the
interaction at distance between such interfacial capillary waves and/or between interfacial Rossby
ones may lead to instability. In order to illustrate the instability mechanism, we revisit the piecewise
linear profile of a plane wake discussed in Biancofiore and Gallaire.8 In the present context, the flow
is however composed of three immiscible fluids (Fig. 1).

The paper is organized as follows. In Sec. II, we present the setup of the model and the formu-
lation of the governing linearised equations in terms of vorticity and displacement. Then in Sec. III,
we analyse the behaviour of the interfacial Rossby and capillary waves in isolation, and the modal
instability results from the phase-locking interaction in a distance between those interfacial waves.
This method of solution is compared with the standard one, based on matching conditions, in the Ap-
pendix. In Secs. IV and V, we analyse the normal modes in terms of the interacting vorticity waves by
means of a temporal and a spatio-temporal analyses. Finally, conclusion and perspectives are drawn
in Sec. VI.

FIG. 1. The model consists of three flows sandwiched between two flat plates including the surface tension acting at the
interfaces.
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II. MODEL SETUP AND GOVERNING EQUATIONS

A. The basic state

The model flow consists of one inner fluid (B) sandwiched between two layers of the same immis-
cible fluid (A and A’) confined between two flat plates, as illustrated in Figure 1. The inner flow
(B) has width 2[h1 + δ

∗
w(α − 1

2 )], where α is a parameter 0 ≤ α ≤ 1, while the outer flows (A and
A’) have the same width h2 + δ

∗
w( 1

2 − α). The two fluids are assumed incompressible and inviscid.
Hence, both the no-slip boundary condition on the walls and the tangential boundary conditions on the
interface are relaxed. A restoring force due to surface tension σ is assumed at the interfaces between
the immiscible fluids, whose positions are controlled by the parameter α, yα = ±[h1 + δ

∗
w(α − 1

2 )].
The dimensional velocity profile of the model flow is

U(y) =




U2 for h1 +
δ∗w
2
≤ |y | ≤ h1 + h2

U2 −
(U1 −U2)

δ∗w
[|y | − (h1 +

δ∗w
2
)] for h1 −

δ∗w
2
< |y | < h1 +

δ∗w
2

U1 for |y | ≤ h1 −
δ∗w
2

. (1)

Using h1 and Um = (U1 +U2)/2 as reference length and velocity scales, respectively, we construct
the following non-dimensional parameters. The confinement parameter is h = h2/h1, the shear layer
thickness is δw = δ∗w/h1, and Λ = (U1 −U2)/(U1 +U2) is the velocity ratio. In general, wake flows
have negative velocity ratios while jet flows have positive ones. When 0 < |Λ| < 1, a co-flow config-
uration is modeled, and while |Λ| > 1, it is a counter-flow setup. Using this set of scales and omitting
the asterisks hereafter, the non-dimensional velocity profile becomes

U(y) =




1 − Λ for 1 +
δw
2
≤ |y | ≤ 1 + h

1 − Λ + m[|y | − (1 + δw
2
)] for 1 − δw

2
< |y | < 1 +

δw
2

1 + Λ for |y | ≤ 1 − δw
2

, (2)

where m = −2Λ/δw. The non-dimensional basic piecewise vorticity profile Q = −dU/dy reads

Q(y) =




0 for 1 +
δw
2
< |y | < 1 + h

−m for 1 − δw
2
< y < 1 +

δw
2

0 for |y | < 1 − δw
2

m for −(1 + δw
2
) < y < −(1 + δw

2
)

0 for −(1 + h) < y < −(1 + δw
2
)

. (3)

B. Vorticity-displacement formulation

We begin with the non-dimensional momentum and continuity equation linearized with respect
to (2),

Du
Dt
= −vUy −

∂p
∂x
, (4a)

Dv
Dt
= ΣC − ∂p

∂ y
, (4b)

C = κδ(y − yα), (4c)
∂u
∂ y
+
∂v

∂x
= 0, (4d)
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where (D/Dt) ≡ (∂/∂t) +U(∂/∂x), u = (u, v) is the perturbation velocity vector, and p is the pertur-
bation pressure. Σ = σ/(h1ρmU2

m) is the non-dimensional surface tension parameter, where ρm is the
reference constant density. C is the capillary force, where κ = ∂2ζ/∂x2 is the approximated inter-
face curvature, where ζ is the perturbation cross-stream displacement. δ symbolizes the Dirac delta
function.

Taking the curl of Eqs. (4a) and (4b), we obtain

Dq
Dt
= −vQy + Σ

∂κ

∂x
δ(y − yα), (5a)

Dζ
Dt
= v, (5b)

where the perturbation vorticity q = (∂v/∂x) − (∂u/∂ y), and the mean cross-stream vorticity gradient
is Qy = −Uy y. For a single Fourier component with wavenumber k of the form eik x, the surface
tension component at the RHS of (5a) becomes −(k2Σ) ∂ζ

∂x
δ(y − yα) and therefore, plays a similar

role to the stably stratified buoyancy restoring force at the interface between two fluids with different
densities (cf. Eqs. (2) and (13b) of Harnik et al.9). The mechanism by which interfacial restoring
forces generate vorticity waves is shown in Figure 2 of Harnik et al.9 in the case of gravity waves and
can be generalized to capillary waves. The main difference between the two restoring forces is that
the surface tension coefficient is proportional to k2 and hence, efficient at small scales, whereas the
buoyancy coefficient affects all wavenumbers equivalently.

Since q = (∂v/∂x) − (∂u/∂ y) = −k2ψ + (∂2ψ/∂ y2), where ψ is the perturbation streamfunc-
tion, equation set (5) can be expressed solely in terms of vorticity-displacement dynamics by intro-
ducing the Green’s function G(y, y ′, k), satisfying −k2G + (∂2G/∂ y2) = −δ(y − y ′). Then

v(y) = ∂ψ/∂x = −ik

y′

q(y ′)G(y, y ′, k)dy ′ (6)

and

Dq
Dt
= ikQy


y′

q(y ′)G(y, y ′, k)dy ′ − ik3
Σζδ(y − yα), (7a)

Dζ
Dt
= −ik


y′

q(y ′)G(y, y ′, k)dy ′. (7b)

The Green’s function G(y, y ′, k) depends on the boundary conditions. Since jets and wakes are
symmetric with respect to the x-axis, two different perturbations can be distinguished: anti-symmetric
varicose perturbations and symmetric sinuous ones. Since any perturbation can be composed of a
linear combination of varicose and sinuous perturbations, we can study only one half of the domain
illustrated in Figure 1. By imposing the Dirichlet condition v(y = 0,1 + h) = ik ψ = 0, the vari-
cose mode is obtained, while the sinuous mode is satisfied by imposing the Neumann condition
u(y = 0) = −∂y ψ = 0 and the Dirichlet one at the wall y = 1 + h. The appropriate varicose and
sinuous Green’s functions are given, respectively, by

Gvc(y, y ′, k) = 1
k sinh[k(1 + h)]




sinh(k y ′) sinh[k(1 + h − y)] for y ′ ≤ y ≤ 1 + h
sinh[k(1 + h − y ′)] sinh(k y) for 0 ≤ y ≤ y ′

, (8)

Gsi(y, y ′, k) = 1
k cosh[k(1 + h)]




cosh(k y ′) sinh[k(1 + h − y)] for y ′ ≤ y ≤ 1 + h
sinh[k(1 + h − y ′)] cosh(k y) for 0 ≤ y ≤ y ′

. (9)

In this paper, we are interested in demonstrating the instability mechanism between capillary and
Rossby waves. Hence, we choose to focus hereafter only on the sinuous mode in order to compare
the effect of surface tension with the study of Biancofiore and Gallaire8 who examined the sinuous
mode dynamics solely in terms of Rossby wave interaction.
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III. INTERFACIAL WAVE INTERACTION PERSPECTIVE TO MODAL INSTABILITY

The dynamics of the phase-locking action at a distance between the two counterpropagating RW
interfacial waves at y = 1 ± δw

2 is analyzed in detail in Biancofiore and Gallaire,8 and the reader is
kindly referred to this paper. In order to analyse the interaction of the two RWs with the capillary inter-
facial waves at yα = ±[1 + δw(α − 1

2 )], we characterise first the dynamics of these capillary waves in
isolation.

A. Interfacial capillary waves

In the absence of a mean vorticity gradient Qy, Eq. (7a) implies that

q = qα(k, t)δ[y − yα], (10)

and therefore at yα, Eq. (7) becomes

Dqα
Dt
= −ik3

Σζ, (11a)

Dζ
Dt
= −ik


y′

qαGα,αdy ′, (11b)

where Gα,α = G(yα, yα) = cosh[k(1+δw(α− 1
2 ))]·sinh[k(h−δw(α− 1

2 ))]
k cosh[k(1+h)] . Equation (11) can be rewritten in a ma-

trix form,

ξ̇ =MCWξ , where ξ =


qα
ζα


and MCW = −ik



Uα k2
Σ

Gαα Uα


. (12)

The eigenvalues of the matrix MCW are λ± = −ikc± = −ik[Uα ± k
√
ΣGαα], where c± are the eastward

and westward normal mode phase speeds. In the reference frame of the interface velocity Uα = U(yα),
one of the capillary waves propagates downstream and is referred to as prograde +, while the other
propagates upstream and is referred to as retrograde −. Since Gαα scales like 2/k for k > 1, the
intrinsic capillary wave velocity, which, respectively, adds to and reduces from the interface velocity,
scales like k1/2. This is best seen in Figure 2(b) where the intrinsic velocity of the two capillary waves
is reported for h = 1, Λ = −1, δw = 0.5, and α = 0.5 and different values of Σ = (0.05,0.2,0.5).

FIG. 2. (a) Sketch of the waves interacting in the piecewise broken line model including surface tension. We call R− and R+

(C− and C+) the Rossby wave (capillary wave) propagating westward and eastward, respectively. (b) Phase speeds of the
wave in isolation for h = 1, Λ=−1, δw = 0.5, and α = 0.5. We have traced the curves for three different values of the surface
tension Σ = (0.05,0.2,0.5). The continuous line depicts R+, the dashed line depicts R−, the dotted one depicts C+, and the
dashed-and-dotted line depicts C−.
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These two waves correspond, respectively, to the eigenvectors

ξ± =



1

±


Gαα

Σk2


. (13)

An arbitrary ξ configuration can be uniquely divided into the two normal modes as follows:

ξ = q+αξ
+ + q−αξ

− (14)

or equivalently in the matrix form, denoting by q = [q+α; q−α], the vector of coefficients in the basis of
the eigenmodes

ξ = Tq =



1 1
Gαα

Σk2 −


Gαα

Σk2


q. (15)

The similarity transformation,

q̇ = (T−1MCWT )q = M̄CWq, (16)

allows us to present the capillary waves dynamics solely in terms of the vorticity contributions of the
respective eigenmodes q±α, where

M̄CW = −ik


c+ 0
0 c−


(17)

is the diagonal matrix consisting the eigenvalues of MCW .

B. Governing equations for the Rossby-capillary wave interaction

The mean vorticity gradient at the half domain of (3) is

Qy = ±mδ[y − (1 ± δw
2
)]. (18)

Hence, now the vorticity waves are localised in three levels at the upper part of the domain (cf. Fig. 2
for illustration): the interface between the immiscible fluids and the two jumps in the mean vorticity
is

q =
(
q1(k, t)δ�y − 1 +

δw
2
�
+ q2(k, t)δ�y − 1 − δw

2
�
+ qα(k, t)δ[y − yα]

)
, (19)

where levels 1 and 2 correspond hereafter to y1,2 = 1 ∓ δw
2 . Substitute Eqs. (18), (19), and (9) in Eq. (7)

yields

∂q1

∂t
= −ik(1 + Λ)q1 + ikm(G11q1 + G12q2 + G1αqα), (20a)

∂q2

∂t
= −ik(1 − Λ)q2 − ikm(G12q1 + G22q2 + G2αqα), (20b)

∂qα
∂t
= −ikUαqα − ik3

Σζα, (20c)

∂ζα
∂t
= −ikUαζα − ik(G1αq1 + G2αq2 + Gααqα), (20d)

where Gi j = G(yi, y j). In a matrix form, Eq. (20) become
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ξ̇ = Mξ , ξ =



q1

q2

qα
ζα



, and (21)

M = −ik



(1 + Λ) − mG11 −mG12 −mG1α 0
mG12 (1 − Λ) + mG22 mG2α 0

0 0 Uα k2
Σ

G1α G2α Gαα Uα



.

The solutions of (21) are the normal modes of the system which can be also obtained in a more
standard way using matching conditions at the interfaces (see the Appendix). Nonetheless, the repre-
sentation of the solution in the form of (20) provides mechanistic interpretation of the normal mode
instability in terms of the interfacial vorticity waves which interact in a distance. Furthermore, the
vorticity and displacement perturbations (qα, ζα) can be decomposed into the vorticity of the pro-
and counter-propagating capillary waves (q+α,q−α) using Eq. (15). Hence, after applying a similarity
transformation, one can transform (21) to the dynamic equation set for the four vorticity waves,

q̇ = M̃q, (22)

where q =



q1

q2

q+α

q−α



and

M̃ = −ik

*...........
,

(U1 − G11m) −G12m −mG1α −mG1α

G12m (U2 + G22m) mG2α mG2α

G1α

2


Σk2

Gαα

G2α

2


Σk2

Gαα
Uα +


GααΣk2 0

−G1α

2


Σk2

Gαα
−G2α

2


Σk2

Gαα
0 Uα −


GααΣk2

+///////////
-

.

The off-diagonal terms of M̃ represent the interaction between the waves which affect their prop-
agation rate and growth. The diagonal entries represent the phase speeds of each wave in isolation,
which are composed of the self propagation speed of each wave and the advection by the flow at
the location of the wave. The upper-left 2 × 2 subsystem characterizes the interacting Rossby waves
in absence of capillary waves. As revealed by Heifetz et al.,7 for an unbounded shear layer or by
Biancofiore and Gallaire8 for the present wake configuration, the two Rossby waves interact in a way
to produce shear instability through the asymmetric coupling terms ±mG12. Since G12 scales like
1/k for k > 1, the self counter-propagating speed of the Rossby waves decreases with wavenum-
ber, approximately as k−1, as shown in Figure 2(b), in contrast to the self propagation speed of the
capillary waves, which increases with the wavenumber approximately as k1/2. From this perspective,
capillary waves differ fundamentally from Rossby and gravity waves (the latter has a propagation rate
proportional to k−1/2, see Umurhan and Heifetz13).

IV. TEMPORAL STABILITY ANALYSIS

In this section, we present the temporal stability analysis of the normal modes in terms of the in-
teracting vorticity waves. We first focus on the influence of the surface tension on the modes (Subsec-
tion IV A) and then discuss (Subsection IV B) which interacting waves are forming the unstable
modes. Finally (Sec. IV C), we examine the sensitivity of the instability to the location of the interface.
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044104-8 Biancofiore, Gallaire, and Heifetz Phys. Fluids 27, 044104 (2015)

FIG. 3. Growth rate (a) and phase speed (b) versus wavenumber k for different values of the surface tension Σ, h = 1,
Λ=−1, α = 0.5, and δw = 0.5. The circles depict Σ = 0, the crosses Σ = 0.05, the squares Σ = 0.2, and the asterisks Σ = 0.5.
The continuous lines represent the first mode, while the dashed ones the second mode.

A. Influence of the surface tension

The eigenvalues λ of (22) are the normal modes of the system λr + i λi, where λr is the growth rate
and ci = λi/k is the phase speed. Without surface tension (Σ = 0), only one unstable sinuous mode is
found. This mode is created by the interaction of the two counterpropagating RWs and the reader is
referred to the previous works7,8,14 for more details. The growth rate and phase speed of this unstable
mode are illustrated by circles in Figure 3 for h = 1, δ = 0.5, Λ = −1, and α = 0.5. The growth rate
presents a maximum of λr = 0.8 and a cutoff wavenumber of k = 2.56. If we introduce the surface
tension at the interfaces, a second unstable mode appears. The maximal growth rate of the first mode is
damped, but the cutoff number significantly increases, until to reach the value of k = 6.97 for Σ = 0.2
(depicted by squares). The second unstable mode concerns large wavenumbers mostly. This agrees
with the instability found by Tammisola et al.1 which seems to be characterized by small wavelengths.
If we continue to increase the surface tension to Σ = 0.5, the cutoff wavenumber starts to decrease.
Then, the surface tension finally induces a stabilisation. In Fig. 3(b), the phase speeds of the normal
modes are illustrated. Interestingly, the mode created by the presence of capillarity propagates at small
wavenumbers with the same speed of the interfaces for all the values of Σ, while the other mode,
already existing without capillarity propagates with a larger speed. Despite the fact that the chosen
geometry is symmetric with respect of the interface (h = 1 and α = 0.5), a significant asymmetry of
the modes with respect of the interface is noticed. This is due to the asymmetric boundary conditions
of the sinuous perturbations. When considering the varicose mode instead (not shown here), the phase
speeds are completely symmetric with respect of the interfaces for the same set of parameters.

Figure 4 shows the isocontours of the growth rate in the plane Σ-k for the two modes. The
maximum of the growth rate for the first mode (a) is in the absence of surface tension, though a
local maximum is present at k = 3.2 and Σ = 0.16. The mode induced by the surface tension has a
global maximum in correspondence with the local maximum of the first mode. The maximal values
of the cutoffwavenumber are included in a range 0.1 < Σ < 0.2. Hence, in this range, capillary effects
destabilise the flow most efficiently.

B. Nature of the modes

In Sec. IV A, we have shown a destabilizing influence of the surface tension mainly via the appear-
ance of a second unstable mode in addition to the classical mode associated with the RW-interaction.
These modes can be obtained as well in a more traditional way by using matching conditions at the
interfaces (see the Appendix for completeness). Here, we wish to benefit from the interfacial wave
interaction perspective, described in Sec. III, to shed light on the physical interaction mechanisms
between the Rossby and capillary waves, where each line in system (22) represents one wave: RW or
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FIG. 4. Contours of the growth rate for the two modes ((a) and (b)) in the plane Σ-k for h = 1, Λ=−1, α = 0.5, and δw = 0.5.
The contours are equally spaced by 0.05.

CW. From now on, we denote R− and R+ (C− and C+), the Rossby wave (capillary wave) propagating
westward and eastward, respectively (see Figure 2).

1. Waves switch off

Starting from the physical system with all four waves (22), we can create other unphysical, but
still meaningful systems by “switching off ” waves. For instance, we can erase the last two lines and
columns from the system to recover the dynamical system obtained by Biancofiore and Gallaire8

(corresponded to the case with Σ = 0) with the two RWs considered only. To give an example of
another partial wave combination, consider the dynamical system corresponding to the coupling of
one R+ and one C−,

q̇1/4 = M̃1/4q1/4, with q1/4 =

q1
q–
α


and

M̃1/4 = −ik
*...
,

(U1 − mG11) −mG1α

−G1α

2


Σk2

Gαα
Uα −


Gααk

√
Σ

+///
-

.

In Figure 5, we show the modal growth rates and phase speeds of these new systems obtained with
switching off the waves. While the first mode at small wavenumbers is influenced mainly from the
two RWs interaction, at large wavenumbers, the two modes are mainly influenced by the interaction
between one RW and one CW propagating in opposite directions (i.e., R+ and C−; R− and C+,
depicted by diamonds and squares, respectively). This is because only waves with opposite propa-
gation signs are able to phase-lock in an unstable modal configuration.15 Simply speaking, waves
with positive (negative) correlation between vorticity and displacement propagate to the east (west),
with respect to the mean flow. Hence, such two waves with opposite propagation signs can resist the
shear and maintain interaction. Furthermore, only waves with opposite propagation signs can mutu-
ally reinforce their amplitude by action at a distance and trigger instability. The symmetry between
the mode composed of R+ and C− and the mode of R− and C+ results from the fact that the interface
between the immiscible fluids is located just in the middle between the two vorticity jump interfaces
(Figure 2). With considering both RWs and one CW (triangles and stars), we have one unstable mode
only which approximates the R+/R− interaction at small wavenumbers and the RW-CW interaction
at larger wavenumbers. Because systems with waves moving along the same direction are always
stable systems with one RW and both CWs present values of the growth rate similar to the R+/C−
and R−/C+ systems (not shown).

In conclusion, the behaviour of these systems obtained by switching off the waves helps to under-
stand which waves are interacting to create the two modes. At small wavenumbers, the mode is
dominated by the R+/R− interaction with a damping effect due to the surface tension, while the
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FIG. 5. Growth rate (a) and phase speed (b) versus wavenumber k for Σ = 0.2, h = 1, Λ=−1, α = 0.5, and δw = 0.5. The
circles depict the unstable mode of the RW-interaction without capillarity effects, the crosses depict the two unstable modes
(continuous and dashed line, respectively) due to the 4-waves interaction (Eq. (22)), the stars depict the interaction between
the C− and the RWs, the triangles depict the interaction between the C+ and the RWs, the squares depict the interaction
between the R− and the C+, and the diamonds depict the interaction between the R+ and the C−.

Rossby-capillary interaction dominates the two modes at larger wavenumbers. However, note that
these results are for α = 0.5. The sensitivity of the results to the location of the capillary interface is
explored in Sec. IV C.

2. Amplitudes and phases

For the intermediate regime of wavenumbers, all four vorticity waves may contribute to the modal
interaction. The interaction between the vorticity waves can be studied then with observing their
amplitudes and the phases. We can obtain amplitudes and phases with computing the eigenvectors
Vi of system (22), where the index i depicts a different mode. In particular, the amplitude of each
vorticity wave is obtained with Qi, j = |vi, j |, where vi, j is the jth component of ith eigenvector, while
their normalized phase is ϵ i, j = arg(vi, j)/π. We show in Figure 6, the amplitudes ((a) and (b)) and
the phases ((c) and (d)) for the two unstable modes with the same set of parameters of Fig. 3. Since
surface tension is a small scale phenomenon, generally we expect that it plays a dominant role for
large wavenumbers. Indeed, from the gravest mode amplitude decomposition (Figure 6(a)), it is clear
that for small wavenumbers, the interaction is mainly between the R− and R+with a phase difference
varies from a fully hindering configuration ∆ϵ = 1 to a full helping configuration ∆ϵ = 0 with the
largest growth rate depicted in the hindering-growing configuration 0.5 < ∆ϵ < 1 (Figure 6(a)). All
these are in agreement with previous RW interaction analysis (e.g., Heifetz et al.7). As the wavenum-
ber increases, the interaction is shifted to a R−/C+ one with a locking phase that varies as well with
wavenumber from the hindering to the helping regime and a maximal growth rate that is obtained in
a growing hindering configuration.

For small and intermediate wavenumbers, the second mode (Figures 6(b) and 6(d)) is a complex
combination of the four interfacial waves but this multi-wave interaction results in a small growth rate.
For larger wavenumbers, k > 3, the growth rates of the two modes practically converge; however, for
the second mode, the interaction now is composed of the reciprocal R+/C− configuration. For this
large wavenumber regime, the amplitude ratio and the absolute phase difference between the R+/C−
in the second mode are practically indistinguishable from the R−/C+ of the first mode.

C. Location of the interfaces

In this section, we wish to analyze the dependence of the two unstable modes on the position of
the interfaces. The choice of α = 0.5 settles the CWs exactly in the middle between the two counter-
propagating RWs. We may expect at first sight that if the interface is closer to the southern (northern)
edge, the interaction will be dominated by the R+/C− (R−/C+) pairs.
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FIG. 6. Amplitudes ((a) and (b)) and phases ((c) and (d)) for the component of the eigenvectors of the system in Eq. (22) for
Σ = 0.2, h = 1, Λ=−1, α = 0.5, and δw = 0.5. The continuous line depicts the first component (R+), the dashed line depicts
the second component (R−), the dotted one depicts the third component (C+), and the dashed-and-dotted line depicts the
fourth component (C−).

In Figure 7, we illustrate the growth rate (a) and phase speed (b) with choosing three different
values of α: α = 0.3, α = 0.5, and α = 0.7. All other parameters are kept constant: Σ = 0.2, h = 1,
Λ = −1, and δw = 0.5. The growth rates of α = 0.3 and α = 0.7 are practically equal, while the phase
speeds of the second mode are symmetric with respect to the velocity of the interface (Uα = 1).

FIG. 7. Growth rate (a) and phase speed (b) versus wavenumber k for different values of the parameter α, Σ = 0.2, h = 1,
Λ=−1, and δw = 0.5. The squares depict α = 0.3, the crosses α = 0.5, the asterisks depict α = 0.7, and the circles depict the
R+/R− interaction. The continuous lines represent the first mode, while the dashed ones the second mode.
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Moreover, the first mode now seems to be completely independent on the second one. Its maximum
growth rate is larger than the one of α = 0.5, but its cutoff number decreases. However, the cutoff
number is still larger than the case without surface tension (R+/R− interaction, circles). On the other
hand, both the growth rate and the cutoff number of the second mode are significantly damped when
moving the interface closer to the northern/southern edge. Hence, decreasing the distance between the
capillary interfaces to one of the edges of the shear layer has an ambiguous effect. It seems to increase
the instability of the first mode, probably because the distant interaction between the capillary and
the Rossby waves becomes more efficient, but it has the opposite effect on the second mode.

To investigate further this subtle behaviour, we analyse again the respective amplitudes of the
capillary and Rossby waves (the phases are omitted for conciseness) as done in Sec. IV B. The ampli-
tudes of the four waves contributing to the two eigenmodes for α = 0.3 and Σ = 0.2 are represented
in Figures 8(a) and 8(b). It is seen that the first and most unstable mode (represented in Figure 7 as
a continuous line) is made of the RW pair at small wavenumber with the R+ progressively dimin-
ishing in favor of the C+ as the wavenumber increases and reaches kmax associated to the maximum
growth-rate. Therefore, it appears that the most destabilizing interaction results from a CW riding
on the interface locking with the counterpropagating RW sitting on the farthest edge from the inter-
face. For α = 0.3, the R− sitting on the northern edge interacts with the C+ riding on the interface.
In contrast, the second less unstable mode has important contributions from the R+ and the C−. A
detailed inspection of synthetic wave combinations (as those depicted in Figure 5) shows however
that this dual interaction is not sufficient and that the coupling with the additional capillary wave (C+
in this case) is a prerequisite for instability.

This scenario is fully corroborated by the analysis of Figures 8(c) and 8(d), which demonstrates
that for an interface located above the equator, for instance, for α = 0.7, the southern edge wave,

FIG. 8. Amplitudes ((a) and (b)) for the component of the eigenvectors of the system in Eq. (22) for Σ = 0.2, h = 1, Λ=−1,
δw = 0.5, and ((a) and (b)) α = 0.3 and ((c) and (d)) α = 0.7. The legend is the same of Fig. 6.
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i.e., the R+ locks in with the C− sitting on the interface to yield the strongest interaction. Figure 8
therefore highlights the strong contribution of the pair R−/C+ (respectively, R+/C−) for α = 0.3
(respectively, α = 0.7): for wavenumbers close to maximum growth, the main instability results from
the coupling of a CW active on the interface with the RW riding on the farthest edge. In this regime,
where surface tension has an overall stabilizing influence (in terms of maximum growth-rate), the
shift from a RW to a CW in the dominant pair of waves will be seen to have a major influence onto
the spatio-temporal behavior of the wake, as further explained in Sec. V.

Finally, we illustrate in Figure 9, the phase speeds of the waves in isolation (i.e., the terms in the
brackets of the diagonal entries of the matrix M̃ in Eq. (22)) as a function of the wavenumber k are
depicted in Fig. 9 for three different values of surface tension Σ = (0.05,0.2,0.5) for two interfacial
positionsα = (0.3,0.7) in complement toα = 0.5 depicted in Figure 2(b). The velocity ratio isΛ = −1
so that the “homebase” mean flow velocity of the R− is U2 = 2 and of the R+ is U1 = 0. The plot
confirms that the self counter-propagating speed of the Rossby waves decreases with wavenumber,
approximately as k−1, while the self propagation speed of the CWs increases with the wavenum-
ber approximately as k1/2, see Sec. III B. The more similar is the phase speed (self plus mean flow
advection) between the waves, which is the easier for them to phase-lock in a growing configuration.
Hence, Figure 9 confirms that the instability at small and intermediate wavenumbers results from
different combinations of interactions between RWs and CWs. For larger wavenumbers, the presence
of surface tension allows new modes of unstable interaction between R+/C− and R−/C+, and this
explains the counterintuitive effect of destabilization by surface tension. This is the essence of the
counterintuitive effect of destabilization by surface tension. Note also that when the interface is not
located right in between the two mean vorticity jumps, the different dependence of self-propagation
speed between the RW and CW originates in the unstable interaction at large wavenumbers between
R+/C− (for α = 0.7) and R−/C+ (for α = 0.3). This means that the CW counterintuitively interacts
with the RW at the farther edge rather than with the RW located on its nearest edge.

In conclusion, the square-root dependence of the capillary wave phase velocity with the wavenum-
ber (as shown in Figures 2(b) and 9) is the main reason for this counterintuitive interaction. Since the
self propagation speed of the CWs increases with wavenumber, at large wavenumbers, they counter
propagate too fast to phase lock with their adjacent RW whose self propagation rate decreases with the
wavenumber. Hence, a larger shear difference between the CW and the RW is required to enable phase
locking between the two. This is achieved when the CW interacts with the RW of its farthest edge.

V. SPATIO-TEMPORAL INSTABILITY ANALYSIS BY MEANS OF IMPULSE RESPONSE

In order to investigate the influence of surface tension on the spatio-temporal properties of shear
flows, we now determine the absolute/convective properties of the model wake flow investigated in

FIG. 9. Phase speeds of the wave in isolation for h = 1, Λ=−1, δw = 0.5, and (a) α = 0.3, (b) α = 0.7. We have traced the
curves for three different values of the surface tension Σ = (0.05,0.2,0.5). The continuous line depicts R+, the dashed line
depicts R−, the dotted one depicts C+, and the dashed-and-dotted line depicts C−.
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this work. An alternative to the classical method which consists in determining the most unstable
admissible k+/k− saddle point in the complex wave number plane, as made by Biancofiore and Gal-
laire,16 for instance, we resort here to the direct computation of the impulse response. For this pur-
pose, we approximate the spatially localized Dirac function serving as an initial condition by a surro-
gate peaked Gaussian distribution consisting of the superimposition of Nk wavenumbers (k j = jδk)
equally sampled at δk resolution (k j = jδk) and with amplitude Aj and vorticity weighted according
to the eigenmodes Xp(k j) associated to the eigenvalues λp(k j). The initial condition thereby writes

X(0) =
Nk
j=1

4
p=1

AjXp(kj) expi(kjx) (23)

and evolves according to

X(t) =
Nk
j=1

4
p=1

AjXp(kj) expi(kjx−λp(kj)t). (24)

The number of Fourier modes Nk has to be chosen large enough to result in a sufficient spatial
resolution of the wavepacket, since δx = 2π/(kmax)with kmax = Nkδk. The wavenumber resolution δk
has also to be chosen carefully to ensure that the spatial expansion of the wavepacket can be captured
at sufficient evolved time horizons, as the maximum domain size Lx before the periodicity starts to
mix the trailing and receding edges is given by Lx =

1
2πδk . We have verified that the following values

Nk = 12 500 and δk = 0.002 are sufficient to capture the wavepacket evolution in the limit of the
machine accuracy. The wavepacket amplitude is subsequently extracted using a Hilbert transform.17

Typical results are shown in Figure 10. In each case, the demodulated wavepacket amplitude is
first premultiplied by

√
t, so as to match the asymptotic long time expression of the impulse response,

as given by Huerre and Monkewitz.18 Such an algebraic correction was included in Gallaire and

FIG. 10. The spatio-temporal spreading of the enstrophy (
√
t · ∥q∥2) for the 4-wave system for h = 1, α = 0.5, δw = 0.5, (a)

Λ=−0.75, Σ = 0, (b) Λ=−0.65, Σ = 0, (c) Λ=−0.65, Σ = 0.2, and (d) Λ=−0.65, Σ = 0.5. The group velocities of front and
of the back of the wavepacket are marked by c−wp and c+wp, respectively.
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Chomaz19 to retrieve A/C transition curves: it is useful because the numerical estimation of the im-
pulse response is limited to a finite time interval because of the finite precision arithmetic. This pre-
multiplicated wavepacket amplitude is then plotted as a function of the ray velocity x/t in Figure 10.
Figures 10(a) and 10(b) are obtained in absence of surface tension for two values of Λ. For a rather
large value of Λ = −0.75 (a), the advection is weak and the wavepacket is seen to invade the entire
domain. While the leading edge and the summit of the wavepacket are travelling downstream, the trail-
ing (or receding) edge of the wavepacket propagates upstream: the instability is absolute. In contrast,
for a larger value of the velocity ratio Λ = −0.65, the growth of the instability is not strong enough
to withstand the advection and the trailing (or receding) edge of the wavepacket also propagates
downstream, pointing to a convective instability.

While in the absence of surface tension, the wavepacket has the usual bell shape, the addition of
a finite amount of surface tension changes the wavepacket shape as well as the propagation direction
of the edges of the packet, similarly to what noticed by Rees and Juniper20 for a top-hat jet/wake
profile. Observe in Figures 10(c) and 10(d) that the instability becomes absolute while the wavepacket
splits in two. This type of double-headed wavepacket suggests that the two unstable branches give
rise to two different wavepackets that overlap in the central region, as will be assessed next. It also
demonstrates the large influence of surface tension on the spatio-temporal stability properties of the
wake: adding a progressive amount of surface tension first makes the flow more absolutely unstable
before it eventually increases the convective character of the instability. This is best seen in Figure 11
where the velocity of the trailing edge of the wavepacket is plotted as a function of Σ for Λ = −0.65.
Observe also that the destabilizing effect of the surface tension is seen to depend on the exact location
of the interface. When the interface is located in the high velocity region (α > 0.5), the addition of
surface tension does surprisingly suffice to withstand the advection. In contrast, the more the interface
penetrates into the low velocity region associated to the inner wake (α > 0.5), the more the instability
is overwhelmed by the advection. In brief, we are left with the following apparent paradox: wakes
where the immiscible interface is relatively slow (α < 0.5) are convectively unstable, while wakes
where the interface is relatively fast (α > 0.5) tend to become absolutely unstable.

This counterintuitive observation can be interpreted by considering the coupling of a counter-
propagating pair of waves consisting of the combination of a Rossby wave and a capillary wave. As
described in Sec. IV B, when α < 0.5 and surface tension is sufficient (typically Σ > 0.1), an unstable

FIG. 11. The group velocity of the back of the wavepacket c−wp depending on the surface tension Σ with δw = 0.5, h = 1
and Λ=−0.65. Three different positions of the interface are depicted: α = 0.3 (squares), α = 0.5 (crosses), and α = 0.7
(asterisks).
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FIG. 12. The spatio-temporal spreading of the enstrophy (
√
t · ∥q∥2) with varying the value of the surface tension Σ for the

systems with (a), (c), (e) R+ plus C− and (b), (d), (f) R− plus C+ for h = 1, Λ=−1, δw = 0.5 for (a), (b) α = 0.3, (c), (d)
α = 0.5, and (e), (f) α = 0.7. The blue line depicts Σ = 0.05, the black line Σ = 0.1, the red line Σ = 0.2, and the green line
Σ = 0.5.

pair is made of an R− and a C+, while when α > 0.5, it is made of an R+ and a C−, i.e., in both situa-
tions, a capillary wave locks in with a Rossby wave riding on the farthest edge from the interface. The
artificially separated wavepackets resulting from the separate development of these two pairs of waves
are represented in Figure 12(a), 12(c), 12(e) and 12(b), 12(d), 12(f). We observe that the synthetic
R−/C+ wavepacket is indeed unstable (respectively, stable) when α = 0.3 (respectively, α = 0.7) as
seen in Figure 12(b) (respectively, 12(f)). In contradistinction, the synthetic R+/C− wavepacket is
stable (respectively, unstable) when α = 0.3 (respectively, α = 0.7) as seen in Figure 12(a) (respec-
tively, 12(e)). For a centered interface α = 0.5 (see Figs. 12(c) and 12(d)), both synthetic wavepackets
are unstable, as suggested by Figure 5(a).
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As sketched in the insets of Figure 12, it can be inferred by considering the mean advection ve-
locity of its constitutive waves that the R−/C+ pair is affected by a larger advection than the R+/C−
pair. This results in the absolute character of the instability being reinforced when the latter pair is
favoured, i.e., for a finite amount of surface tension and for α = 0.7 (Figures 11 and 12(c)), i.e., coun-
terintuitively for a relatively fast interface. In contrast, when the interface is located in the slow inner
region of the wake, for instance, for α = 0.3, the R−/C+ pair is favoured, which benefits from a large
advection, reinforcing the convective character of the instability (Figures 11 and 12(b)).

This argumentation can be further justified by following the analysis of Biancofiore and Gal-
laire,8 who have explained the enhancement of the absolutely unstable nature of wake flows through
the addition of a moderate confinement23 by examining the average group velocity of the two RWs,
taken in isolation. They have noticed a remarkable correspondence between the absolute/convective
transition and the average group velocity, which suggests that the enhancement of absolute instability
triggered by the confinement is mainly due to the dependence on the confinement of the group ve-
locity of the counterpropagating RWs taken freely to propagate, without interacting one with each
other. Since the slow R+/C− pair is favoured by an interface located above the equator (typically for
α = 0.7), while in contrast, the fast R−/C+ pair dominates for interfaces located below the equator
(typically for α = 0.3), and since the resulting growth-rate is very similar for both interface locations,
the difference in mean average group velocity between these two pairs results in the absolute character
of the instability when α = 0.7 and the reinforcement of the convective character of the instability
when α = 0.3, accounting for the observations of Figure 11.

When the surface tension is further increased, the interplay between the mean advection of the
waves, well characterized by the mean group velocity of the interacting waves taken in isolation
(Figure 13), and the reduced growth of the instability associated to a shift towards small k of the
unstable wavenumber band (Figure 4), results in an overall stabilization with the tendency towards
absolute instability of the R+/C− pair being progressively overcome by the domination of the R−
which replaces the C− in the shrinking unstable wavenumber range. This leads to a local minimum
of the receding wavepacket edge velocity located around Σ = 1 in Figure 11.

The RW/CW interpretation therefore enables to unravel the mechanism behind the significant
reinforcement of the absolute instability by a finite amount of surface tension when α > 0.5. As the
surface tension increases to order one values, the R+ progressively couples with the C− which both
combine into an unstable but slowly advecting instability mode, since the constitutive pair is centered
around the low velocity region of the inner wake.

FIG. 13. The average group velocity of the (i) two RWs (dashed-and-dotted line), (ii) R− and C+ with α = 0.3 (dashed
lines), and (iii) R+ and C− with α = 0.7 (continuous lines) for different values of Σ, δw = 0.5, h = 1, and Λ=−1. Crosses
depict Σ = 0.05, squares depict Σ = 0.2, and asterisks depict Σ = 0,5. Note that the group velocities of the RWs do not depend
on either the surface tension or the location of the interface.
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VI. CONCLUSIONS

In this paper, we have modeled a wake with a piecewise broken line profile, in order to be able to
describe the system by means of an interfacial wave interaction perspective. This perspective has been
already used to explain geophysical flows systems,7,14 including possibly buoyancy effects.9,10,13 In
this manner, we have explained the counterintuitive destabilization noticed first by Tammisola et al.1

in a wake of two immiscible flows. This destabilization is due to the presence of a new unstable mode
created by a Rossby-capillary waves interaction. Moreover, the absolute nature of the instability of
the Rossby-capillary mode increases in the presence of a moderate surface tension. This is caused by
the influence of the surface tension on the waves, responsible for the dominating instability, taken in
isolation.

In particular, we have found that the surface tension associated with the immiscible interface
creates two capillary waves at riding on the interface which propagate in opposite directions, when
viewed in the reference frame traveling at the velocity of the interface. These waves can interact
with the RWs created at the edges where the potential vorticity is discontinuous. Interestingly, the
propagation rate of capillary waves increases with wavenumber (roughly as k1/2) in contradistinction
of interfacial Rossby waves and gravity waves13 whose propagation rates decrease with wavenumber
(roughly as k−1 and k−1/2, respectively).

By means of a temporal analysis, we have found that the interaction between one RW and one
CW, which is propagating in opposite direction creates a second unstable mode in addition to the mode
created by the RW-interaction typical of wakes.8 This interaction was confirmed also by studying the
amplitudes and the phases of the vorticity waves. The maximum growth rate and the cutoffwavenum-
ber were found to be significantly depending on the position of the interfaces. If the interface is located
close to the northern (southern) edge, the interaction between the R− and C+ (R+ and C−) is favored
at large wavenumbers and rather weak surface tension, while it is the opposite at larger surface tension
and small wavenumbers. This counterintuitive interaction between a CW and the farthest RW is due
to the anomalous growing evolution of the CW-propagation rate with the wavenumber. This leads to
a phase locking between capillary and Rossby waves in a far distance, since then the shear between
the waves manages to balance the large counterpropagation speed of the CWs.

Furthermore, we have conducted a spatio-temporal analysis by means of an impulse response to
a localized perturbation of the dynamical system describing the four waves (two RWs and two CWs).
We have noticed that the absolute unstable character of the wakes is significantly enhanced if the
location of the interface is close to the northern edge, i.e., the fastest edge. This is counter-intuitive
since this situation corresponds to a relatively fast interface, which could have been thought at first
sight to reinforce the convective character of the instability. We have explained this apparent paradox
with noticing that the mean average group velocity of the waves dominating the instability at α = 0.7,
i.e., R−/C+, decreases with the surface tensions.

While this paper is dedicated to wakes, this type of analysis can be easily conducted for other
shear flows, such as jets or mixing layer. Tammisola et al.2 have shown, for instance, that also planar
jets can be destabilized by surface tension. While for the temporal stability, mixing layers and jets
should have a qualitative behaviour similar to wakes, the spatio-temporal evolution could present
significant discrepancies. For jets, the most favorable location of the interfaces for absolute instability
should differ with the respect to wakes.

The wave-coupling mechanism investigated in this study can be related to other instabilities due
to interacting waves such as Holmboe modes12 or the Taylor21-Caulfield11 instability. Capillary waves
behave similarly to gravity waves generated by stratification. It would be therefore worthwhile to
study the spatio-temporal evolution of instabilities caused by stratification by means of an impulse
response as made in Sec. V. Finally, aerosol spraying from the ocean to the atmospheric boundary
layer results from small scale capillary water waves, where both buoyancy and surface tension play
a role. Hence, the present work may constitute a starting point for studies devoted to understanding
the evolution and interaction of these waves from an action at a distance perspective.
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APPENDIX: NORMAL MODE PERSPECTIVE: DISPERSION RELATIONS

In this section, we obtain the “classical” dispersion relation (see chapter 8 of Drazin and Reid22)
associated to the model described in Sec. II A.

It is possible to linearize the non-dimensional incompressible 2D Euler’s equations about the
base flow U assuming small perturbations on the flow,

ik(U − ω
k
)ũ + dU

dy
ṽ + ik p̃ = 0, (A1a)

ik(U − ω
k
)ṽ + dp̃

dy
= 0, (A1b)

ikũ +
d ṽ
dx
= 0, (A1c)

where we have introduced the classic normal mode decomposition: for a generic quantity, â derives
from the decomposition in normal modes a′ = ã(y)expi(k x−ωt). Note that k and ω are taken dimen-
sionless by means of the set of scale introduced in Sec. II A. At this point, the streamfunction ψ ′

of the perturbation can conveniently be introduced. Suppose that u′ = ∂ψ′

∂y
and v ′ = − ∂ψ

′

∂x
and take

also normal modes decomposition ψ ′(x, y, t) = φ(y)ei(k x−ωt). Therefore, ũ = dφ
dy

and ṽ = −ikφ are
obtained. On using these results into Eq. (A1), the Rayleigh stability equation is obtained as follows:

(U − ω
k
)( d2φ

dy2 − k2φ) − d2U
dy2 φ = 0. (A2)

Observe in Fig. 1 that the flow could be divided in seven sub-domains, separated by y = h1 ± δ∗w
2 ,

where the vorticity has a discontinuity, and by the interfaces y = ±yα. The total streamfunction can
be decomposed into basic and perturbation contributions,

Ψi(x, y, t) = Ui y + φi(y) · ei(k x−ωt), (A3)

with i = 1, . . . ,7. Since U ′′i (y) = 0 for each sub-domain i, the solution of Rayleigh equation degen-
erates in an harmonic solution φi = Aiek y + Bie−k y, yielding 14 unknowns (Ai, Bi). We can divide
between sinuous and varicose perturbations by taking advantage of the symmetry of the domain,
so the fourteen unknowns reduce to seven. Further constraints are to be imposed with consider-
ing only one half of the model: imposition of zero y-velocity at the wall, continuity of the particle
displacement and of the pressure (excluding where the surface tension is present) on the interfaces
between sub-domains. Thus, the equations of motion and the boundary conditions are reduced to a
single relationship between the frequency ω, the wavenumber k, and the parameters of the model
(Uj, ρ j,h j, δ

∗
w,α,σ). The dispersion relation can only be satisfied for certain eigenvalues, (ω, k),

from which corresponding eigenfunctions, φi(y), can be calculated. The dimensionless varicose and
sinuous dispersion relations, so, are as follows:

D ≡ (1 − S) M2 − tanh[kδw(1 − α)]
1 − M2 tanh[kδw(1 − α)] − (1 + S) [M1 − tanh(kδwα)]

[1 + M1 tanh(kδwα)] +

+
4SΛ

kδw[1 + Λ(1 − 2α) − ω
k
] +

kΣ
[1 + Λ(1 − 2α) − ω

k
]2 = 0, (A4)

D ≡ (1 − S) N2 − tanh[kδw(1 − α)]
1 − N∗2 tanh[kδw(1 − α)] − (1 + S) [N1 − tanh(kδwα)]

[1 + N1 tanh(kδwα)]
+

4SΛ
kδw[1 + Λ(1 − 2α) − ω

k
] +

kΣ
[1 + Λ(1 − 2α) − ω

k
]2 = 0, (A5)
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where M1, M2, N1, and N2 are M1 = coth[k(1 − δw
2 )] − 2Λ

kδw(1+Λ−ω
k
) , M2 = N2 = − coth[k(h − δw

2 )] −
2Λ

kδw(1−Λ−ω
k
) , and M1 = tanh[k(1 − δw

2 )] − 2Λ
kδw(1+Λ−ω

k
) .

We can construct more simplified models, neglecting the effect of either the surface tension or
the shear layer thickness. When Σ is settled to zero, the dispersion relations are straightforward: it
is enough to neglect the terms containing the surface tension in Eqs. (A4) and (A5). This particular
model has been analyzed by Juniper24 and Biancofiore and Gallaire,8,16 and the reader is referred to
these publications for the corresponding dispersion relations. When δw → 0, the limit of the non-
dimensional dispersion relations becomes

D ≡ (1 + S)(1 + Λ − ω
k
)2 coth(k) + (1 − S)(1 − Λ − ω

k
)2 coth(kh) − kΣ = 0, (A6)

D ≡ (1 + S)(1 + Λ − ω
k
)2 tanh(k) + (1 − S)(1 − Λ − ω

k
)2 coth(kh) − kΣ = 0, (A7)

which are the dispersion relations studied by Rees and Juniper20 and Biancofiore and Gallaire.25 The
model becomes a top hat jet/wake with the presence of a surface tension on the interfaces. Note that,
without shear layer thickness δw, the parameter α looses its meaning.
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