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ABSTRACT

The role of the continuous spectrum and its associated potential vorticity (PV) in absolute instability are
investigated in the context of a semi-infinite version of Eady’s basic state. This flow crudely resembles the
zonally averaged midlatitude atmosphere. The disturbances are composed of a zero PV part and a nonzero PV
part. A closed form analytic solution is described that features a localized wave packet whose streamfunction
field expands and amplifies in an absolutely unstable way. However, since an examination of the PV field
associated with this disturbance reveals that the linear amplification of the localized streamfunction wave packet
is induced by a nonlocalized PV field, it is clear that the seed for the expansion of the streamfunction wave
packet lies not within the wave packet but upstream of the wave packet. While this precise analytic solution
allows for the identification of the upstream PV anomalies, any sort of measurement error would render these
upstream PV anomalies invisible. Thus, observations would be incapable of distinguishing an absolute instability
seeded by PV anomalies generated within the confines of the streamfunction wave packet from the absolute
instability described by the authors’ solution.

The general initial value solution is analyzed, and it is found that this apparent absolute instability is not a
peculiarity of this particular solution. Absolutely unstable wave packets will be ‘‘naturally selected’’ over
geophysically relevant timescales to dominate the flows that emerge from random disturbances to the idealized
basic state. In Eady’s basic state, which is bounded aloft by a rigid lid, the natural selection mechanism only
operates at wavelengths at which the normal modes of Eady’s basic state are neutral. It is suggested that an
atmospheric counterpart of this natural selection process may be responsible for the medium-scale upper- and
lower-tropospheric waves that have recently been identified in the observational record.

The authors prove that the group velocity of a streamfunction field attributable to eastward moving PV
anomalies may, in fact, be westward.

1. Introduction

Concerned that normal-mode stability analysis tech-
niques were incapable of explaining localized baroclinic
instabilities, Merkine (1977) borrowed mathematical
techniques from plasma physics (Briggs 1964) to dis-
tinguish absolute instability from convective instability.
According to Briggs (1964, p. 9), a system is absolutely
unstable if a disturbance of finite spatial extent grows
at every fixed point in space, whereas if the disturbance
(eventually) decays at every fixed point in space, the
flow is deemed convectively unstable. Although these
assessments depend on the frame of reference in which
one chooses to define ‘‘fixed’’ points, when one chooses
the frame of reference to be fixed relative to the surface
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of the earth, they usefully distinguish disturbances that
can continuously amplify over a fixed geographical lo-
cation from those that are advected downstream. Mer-
kine’s schematic illustrations of convective and absolute
instability are shown in Fig. 1.

Since Merkine’s introduction of mathematical tech-
niques for identifying absolutely unstable flows, much
of the work on absolute and convective instability has
been motivated by the desire to understand the locali-
zation and maintenance of midlatitude storm tracks. As
was noted by Blackmon (1976) and Lau and Wallace
(1979), Northern Hemisphere baroclinic activity tends
to be concentrated in zonally confined storm tracks.
While Hoskins and Valdes (1990) argued, among other
things, that since the storm tracks are located down-
stream of, and at, regions where small disturbances are
likely to rapidly amplify and since there are sources of
disturbances upstream of storm tracks, the position of
the storm tracks can be accounted for by waves that are
merely convectively unstable. On the other hand, in the
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FIG. 1. Schematics of convective and absolute instability devel-
opment are shown in (a) and (b), respectively. In convective insta-
bilities, the perturbation (illustrated by the round curves) is advected
downstream as it evolves with time t (illustrated by the dashed arrow).
In absolute instabilities, the perturbation resists the mean flow ad-
vection and remains stationary as it amplifies and expands with time.

context of WKBJ theory, Pierrehumbert’s (1984) work
has shown that the existence of localized regions of
absolute instability allows localized eigenmodes in cer-
tain circumstances. The theory produces similarities to
observed storm track structure when applied to inho-
mogeneous baroclinic jets. In this way, Pierrehumbert’s
theory suggests that while the existence of absolute in-
stability is not a necessary condition for the existence
of storm tracks, it may be a sufficient condition. Swan-
son and Pierrehumbert (1995) have gone on to point out
that, inter alia, the existence of absolute instability al-
lows for the possibility of two apparent sources of ex-
citation—one upstream and one within the storm track.

The ability of baroclinic wave packets to resist being
advected downstream is also relevant to theories for the
development of waves on atmospheric fronts.1 Since
atmospheric fronts have a finite length, amplifying pack-
ets of frontal waves may be advected off the front before
they reach a significant amplitude. If a wave packet can
resist the tendency of the wind to advect disturbance
energy downstream, it has more of an opportunity to
produce a significant frontal wave than it would if it
was rapidly blown off the frontal region.

Here, we describe how a localized, absolutely unsta-
ble, baroclinic streamfunction disturbance may be seed-
ed by disturbances in the potential vorticity (PV) field
far upstream of the disturbance. Importantly, the up-
stream PV anomalies make a vanishingly small impact

1 Parker (1998) provides a review of current theories of frontal
wave development.

on the amplitude of the streamfunction field until they
are advected into the center of the disturbance. Once
they are in the wave packet, they have a large impact
on the streamfunction and cause surface temperature
anomalies to amplify. Implications of this demonstration
include the following. 1) Absolute instability of the
streamfunction field does not necessarily imply the ex-
istence of a source of excitation capable of moving up-
stream from within the wave packet to beyond the lead-
ing edge of the wave packet, and 2) the accurate rep-
resentation of the absolute instability described by our
solution requires higher spatial resolution than that pro-
vided by discrete observation–modeling–forecasting
systems.

Our interpretation of the general initial value solution
for the semi-infinite Eady model expands and gener-
alizes previous analytic work on the semi-infinite Eady
problem by Farrell (1984), Müller et al. (1989), Thorn-
croft and Hoskins (1990), Chang (1992), and Davies
and Bishop (1994). Farrell gave a particular solution
relevant to midlatitude cyclogenesis that emphasized the
importance of the continuous spectrum in development.
Müller et al. (1989) gave a zero PV perturbation solution
relevant to both frontogenesis and cyclogenesis that did
not include the continuous spectrum. Thorncroft and
Hoskins presented an analytic initial-value solution rel-
evant to frontal wave development. Chang (1992) clar-
ified the connection between Thorncroft and Hoskins’s
work and Farrell’s work and also showed how the semi-
infinite Eady model could be used to understand how
vertical descritization in numerical models could lead
to forecast errors. Davies and Bishop (1994) provided
an interpretation of development in the semi-infinite
Eady model in terms of the interaction between interior
PV waves and potential temperature waves on the sur-
face.

In section 2, we present a closed-form initial value
solution that features a localized absolutely unstable
streamfunction disturbance. To show that these distur-
bances arise naturally from random perturbations to the
semi-infinite Eady basic state in section 3, we derive
the general initial value solution and show how it may
be decomposed into wave packets of distinct group ve-
locities. In doing so, we explicitly isolate the absolutely
unstable part of the solution. Our conclusions are drawn
in section 4.

2. Dynamics of an absolutely unstable wave packet

Our example of an absolutely unstable wave packet
is obtained by letting PV waves of the type discussed
in Thorncroft and Hoskins (1990) resonantly amplify
the zero PV nonamplifying wave packet discussed in
Müller et al. (1989). We begin by describing the basic
state and the equations governing the evolution of per-
turbations to the basic state. We then review Müller et
al.’s (1989) neutral wave packet and Davies and Bish-
op’s (1994) interpretation of Thorncroft and Hoskins’s
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(1990) PV waves. Finally, we select the set of PV waves
that amplifies Müller et al.’s (1989) neutral wave packet.

a. The basic state

The semi-infinite Eady basic state considered here
would be equivalent to Eady’s (1949) model were it is
not for the fact that in the semi-infinite Eady model
there is no upper boundary. This semi-infinite basic state
comprises a quasigeostrophic, incompressible, Boussi-
nesq, and uniformly stratified flow on an f plane in the
space z ∈ [0, `). The basic state has a linear uniform
baroclinic shear U 5 Lz and hence a zero mean PV
gradient. The PV equation for a y-independent PV dis-
turbance is

2
] ] f01 U c9 1 c9 5 0, (1)xx zz1 21 1 2 2]t ]x N

where c9 is the geostrophic perturbation streamfunction,
f 0 is the domain-averaged Coriolis parameter, and N is
the Brunt–Väisälä frequency. A simplifying coordinate
transformation for the perturbation equations for this
basic state is

N f L0(x̃, ỹ, z̃, t ) 5 x, y, z, t . (2)˜ 1 2f N0

Note that although z̃ is stretched relative to z, it is mea-
sured in fractions of meters while t̃ is nondimensional.
We chose not to nondimensionalize spatial coordinates
because there is no obvious limited spatial scale asso-
ciated with the basic state. In these transformed coor-
dinates, the PV equation (1) takes the form

] ]
1 z̃ (c9 1 c9 ) 5 0, (3a)x̃x̃ z̃ z̃1 2]t ]x̃˜

For reference, note that for the geophysically relevant
midlatitude parameter values are L 5 30 m s21 (10
km)21, f 0 5 1024 s21, and N 5 1022 s21; then units of
z̃ and t̃ would correspond to 0.01 m and 9.26 h, re-
spectively. The surface boundary condition for (3a) is
obtained from the thermodynamic equation together
with the requirement that vertical velocity vanishes at
z̃ 5 0; that is,

] ]
1 z̃ c9 5 c9. (3b)z̃ x̃1 2]t ]x̃˜

Note that c z̃ and c x̃, are scaled potential temperature u9
and geostrophic meridional wind perturbations , re-y9g
spectively. The second boundary condition for (3a)
comes from the requirement that c9 remain finite as z̃
→ 1`. For notational convenience, for the rest of this
paper we shall drop the tildes and let (x, y, z, t) refer to
the coordinates (x̃, ỹ, z̃, t̃) defined in Eq. (2).

b. Müller et al.’s zonally localized neutral wave
packet

Müller et al. (1989) took the Fourier integral of the
y-independent form of the discrete zero PV neutral-
mode solutions discussed in Gill (1982, section 13.2),

` u (k)0 2mz ik[x2(t /m)]c 5 2 e e dk, (4)u E mk52`

where m 5 k2 5 |k|, with u0(k) 5 2mAe2bm/2, toÏ
obtain

`1
2bm 2mz i[kx2(k /m)t]c 5 Ae e e dk. (5a)u E2 k52`

Note that the group velocities of the waves compose
this integral are precisely equal to zero. Grouping to-
gether the parts of the integrand into odd and even parts
allows the above expression to be rewritten in the form

`

2k(b1z)c 5 cos(t) Ae cos(kx) dku E
k50

`

2k(b1z)1 sin(t) Ae sin(kx) dk. (5b)E
k50

Using the appropriate standard integral formula, one
then obtains the Müller et al. (1989) solution

a x1c 5 A cos(t) 1 A sin(t) , (5c)u 2 2 2 2x 1 a x 1 a1 1

where a1 5 b 1 z. As discussed in Hoskins et al. (1985)
and Bishop and Thorpe (1994), this wave packet may
be viewed as being attributable to the potential tem-
perature distribution at the surface.

The wave packet oscillates with the period 2p that,
with the typical parameter values mentioned in section
2a, corresponds to a period of 58.18 h. As Müller et al.
point out, even though the envelope of this wave packet
does not grow, cyclonic vorticity increases as the initial
surface anticyclone, cu(x, z 5 0, t 5 0) 5 A(b/x2 1 b2),
is replaced by a cyclone in 29.09 h. In the next section,
we show how the envelope of this wave packet can be
amplified by PV waves in the interior of the domain.

c. Resonance-inducing waves of PV

In the appendix of Thorncroft and Hoskins (1990) it
is noted that when an infinitely thin PV wave of zonal
wavenumber k is advected at the same speed as the
propagation speed of the zero PV neutral mode de-
scribed by (4), it (eventually) causes a zero PV neutral
mode to amplify linearly with time. This linear ampli-
fication rate is proportional to the magnitude of the PV
wave. They also show that in order for the PV wave to
be advected at the same speed as the propagation speed
of its zero PV counterpart, its infinitely thin PV field
must be placed at the Rossby height, HR 5 1/m. The
relevance of infinitely thin PV waves to development
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in our semi-infinite basic state is illuminated by the
Green’s function representation of the evolution of an
arbitrary PV disturbance PV(x, z, t); namely,

` `

ik(x2z9t)PV(x, z, t) 5 P(z9, k)d(z9 2 z)e dz9 dk.E E
k52` z950

(6a)

Here, the prime on z is used to distinguish the height
z9 over which the integral is being performed from the

(stretched) height z, and P(z, k) is the Fourier transform
in the x direction of the PV field at the height z9. This
equation gives the evolution of the PV field in terms of
an integral of infinitely thin PV waves of wavenumber
k moving at the speed z9 of the local wind. Note that
in the scaled coordinates z̃9t̃ 5 U(z9)t.

As discussed in Davies and Bishop (1994), the
streamfunction field whose PV field is identical to that
given by (6a) and whose surface potential temperature
distribution is equal to zero is given by

` ` g(z9, z)
ik(x2z9t)c (x, z, t) 5 2 P(z9, k) e dz9 dk, (6b)IPV E E [ ]mk52` z950

where

g(z9, z)

cosh(mz)/cosh(mz9) for z , z9
215 [1 1 tanh(mz9)]

2m(z2z9)5e for z . z9

(the subscript IPV stands for internal PV). Again, fol-
lowing Bishop and Thorpe (1994) and Hoskins et al.
(1985), since this streamfunction field has zero surface
potential temperature associated with it, it may be
viewed as being solely attributable to the internal PV
field described by (6a). The [1 1 tanh(mz9)] term is
necessary to ensure that g(z9, z91)z 2 g(z9, z92)z 5 [(1
1 tanh(mz)9]21[2m 2 m tanh(mz9)] 5 2m. This relation
ensures that the amplitude of the x-Fourier transform of
the PV field at the height z9 is proportional to P(z9, k).

Comparing Eqs. (6a) and (6b), we see that the stream-
function field attributable to an infinitely thin PV wave
located at the height z9 with wavenumber k is given by
the negative of the term in square brackets in Eq. (6b).
The specific structure of this streamfunction field is il-
lustrated in Fig. 2. Note that the wind field attributable
to each infinitely thin PV wave is nonzero at the surface.
Since the meridional component of this wind advects
the surface mean temperature, any arbitrary distribution
of interior PV results in a redistribution of the surface
potential temperature field. The streamfunction field as-
sociated with these changes in surface potential tem-
perature does not change the interior PV field because
the variation of the PV field with y is assumed to be
zero. (Note that even if the PV field did vary with y the
advection of it by winds attributable to surface potential
temperature would be a nonlinear process and hence
negligible for small amplitude disturbances.)

The streamfunction field attributable to surface po-
tential temperature has zero PV associated with it.
Hence, it must take the zero PV form,

` ` B(k, z9, t)
2mz ikxc (x, z, t) 5 2 e e dz9 dk.u E E mk52` z950

(7a)

The corresponding potential temperature field is

u(x, z, t) 5 c9(x, z, t)z

` `

2mz ikx5 B(k, z9, t)e e dz9 dk, (7b)E E
k52` z950

where B(k, z9, t) denotes a complex amplitude of the
component of the zero PV surface wave excited by PV
at the height z9 with wavenumber k (B 5 0 at t 5 0
since we assume zero surface potential temperature dis-
turbance at t 5 0). In mathematical terms, the interaction
between the wind field attributable to interior PV and
the surface temperature field is described by using (6b)
and (7a,b) in (3b) to obtain

]B 2ik
2mz9 2ikz9t5 [B 1 P(z9, k)e e ]. (8)

]t m

The solution to this differential equation is
2i(k /m)t 2mz9e P(z9, k)e

ik[(1/m)2z9]tB 5 [1 2 e ]. (9a)
m1

2 z91 2m

To see the behavior of this solution near z9 5 1/m,
multiply both the numerator and denominator of this
equation by ei(k/2)(1/m1z9)t and make use of the Euler for-
mula to obtain

2mz92iP(z9, k)e k 1
B(k, z9, t) 5 sin 2 z9 t1 2[ ]2 mm 1

2 z91 22 m

2i(k /2)[(1/m)1z9]t3 e . (9b)
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FIG. 2. A zonal vertical cross section of the streamfunction cIPV,
attributable to a PV kernel located at 3 km. The associated resonant
wavelength for the dimensional parameters given in section 2a is
ù1900 km. Note that the field attributable to this PV kernel has zero
surface potential temperature. The units of the streamfunction are
normalized here by P(z9, k) 3 106, where z9 and k pertain to 3 km
and 2p/1900 km, respectively. Solid and dashed lines indicate pos-
itive and negative values, respectively.

When the PV wave is located exactly at the Rossby
height of deformation, z9 5 1/m, its dimensional period
T 5 2pN/f 0L is the same as that of the surface modes,
and resonant surface-mode amplification ensues. To see
this in the mathematics, take the limit of (9b) as z9 tends
to 1/m to obtain

 1 P , k1 2m 1 k
2i(k /m)tB k, , t 5 2i e t. (10) 1 2m e m 

Since the magnitude of P is constant, it is clear from
(10) that B undergoes a linear amplification. As dis-
cussed in Davies and Bishop (1994), this growth results
from the fact that the PV crests lag surface potential
temperature crests by p/2 as both crests move to the
east at the speed 1/m.

d. Absolute instability via deformation of PV

Imagine that there was a single infinitely thin PV
wave at every possible height z9 of the atmosphere and
that the wavenumber of each PV wave was the resonant
wavenumber, mR 5 1/z9. In this case,

1
P(z9, k) 5 F(z9)d z9 2 ; (11)1 2m

that is, the Fourier transform of the PV at the height z9
has d-function peaks at k 5 61/m. Note that this does

not imply that the PV is singular—it merely implies that
the PV field at z9 is entirely described by a finite-am-
plitude wave with wavelength l 5 2p/m. Using (11)
and (10) in (7a) gives

 1 F1 2` m i k
2mz 2i(k /m)t ikxc (x, z, t) 5 e e e dk . (12a) u Ee m m

2` 

Since F(1/m) is symmetric about k 5 0, and since k/m
is equal to the sign of k, we may group the odd and
even parts of the integral in (12a) to obtain

 1 F1 2` m2
2mzc (x, z, t) 5 sin(t) e cos(kx) dku Ee m0

1 F1 2` m 
2mz2 cos(t) e sin(kx) dk t.E m0 

(12b)

Similarly, using (11) in (6b) gives

 1 1 F g , z1 2 1 2` m m
c (x, z, t) 5 22 cos(t) cos(kx) dkIPV E m0

1 1 F g , z1 2 1 2` m m 
1 sin(t) sin(kx) dk .E m0 

(13)

In this way, we see that the class of PV perturbations
defined by (6b) subject to (11) leads to a linear ampli-
fication of the zero PV streamfunction field (12b). This
amplification is caused by the resonant interaction de-
scribed Thorncroft and Hoskins (1990). In the termi-
nology of Pedlosky (1964), the surface modes grow as
a result of their interaction with the continuous spectrum
of modes required to represent the interior PV field.

In order to highlight the implications of this contin-
uous spectrum on absolute instability, we need to choose
1/m such that a zonally localized disturbance results.
Muller et al.’s (1989) solution suggests an analytically
tractable localized disturbance. Comparing (12) with the
kernel used in (5), we see that Muller et al.’s wave
packet is excited if we take

(12bm)1 Ame
F 5 2 . (14)1 2m 2

As is shown in appendix A, substituting this choice for
F in (13) gives
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2(a /z) [22(a /z)]2 1A a a e x x e x x1 2c (x, z, t) 5 cos(t) 1 1 x sin 2 a cos 1 a cos 2 x sinIPV 2 12 2 2 2 2 2 2 25 1 2 1 2 1 2 1 2[ [ ] [ ]]2 a 1 x a 1 x a 1 x z z a 1 x z z1 2 2 1

2(a /z)2x x e x x
1 sin(t) 1 2 a sin 1 x cos22 2 2 2 2 2 1 2 1 2[ [ ]a 1 x a 1 x a 1 x z z1 2 2

[22(a /z)]1e x x
1 x cos 1 a sin ,12 2 1 2 1 2 6[ ]]a 1 x z z1

(15)

where a1 5 b 1 z and a2 5 b 2 z. Although this
equation is singular for certain values of x and z, the
limit analysis discussed in appendix B shows that cIPV

is bounded throughout the semi-infinite domain. The
streamfunction field attributable to the surface potential
temperature field is obtained by substituting (14) into
(12b) to obtain

x a1c 5 A cos(t) 2 sin(t) t. (16)u 2 2 2 2[ ]a 1 x a 1 x1 1

Equation (5b) describes a zonally localized wave packet
that differs from the neutral wave packet (5c) only in that
1) the oscillation of the wave packet is a ¼ period ahead
of that in (5c) and 2) it is linearly amplifying with time.
This linear amplification occurs at all values of x; hence,
the evolution of the wave packet is in accord with Mer-
kine’s schematic picture (Fig. 1b) of absolute instability.

More important, it is a zonally localized region of am-
plifying baroclinic activity whose center is stationary even
though the wind is westerly everywhere above the surface.
This fact is illustrated in Figs. 3, 4, and 5, which show
the evolution of the total streamfunction, c9 5 cIPV 1 cu

and its component parts. Figure 5, which shows the stream-
function field attributable to the interior PV field, is par-
ticularly interesting. It shows streamfunction anomalies
apparently appearing out of nothing in the air upstream
of the wave packet center. The process by which this oc-
curs can be inferred from the interior PV field,

A x x
[12(b /z)]PV 5 2 e cos(t) cos 1 sin(t) sin , (17)

3 1 2 1 2[ ]z z z

which can be obtained either from the Laplacian of (15)
or, as is shown in appendix C, by using (11) and (14)
in (6a). The evolution of this field is illustrated in Fig.
6. This figure shows that the apparently quiescent up-
stream and downstream regions are packed with waf-
erlike PV perturbations. In these regions, positive and
negative PV wafers overlie each other rather like the
pages of a book. The close proximity and fine structure
of these positive and negative PV wafers in the upstream
region result in the streamfunction field attributable to
the positive PV wafers canceling out the streamfunction
field attributable to the negative PV wafers. In time,
thermal wind shear transforms the PV wafers from hor-

izontally lying thin PV anomalies into vertically stand-
ing broad PV anomalies. As the anomalies are advected
into the vertical position, their distance from oppositely
signed regions of PV is maximized and consequently,
their impact on the streamfunction field is maximized.

The surface wind field attributable to these broad PV
anomalies causes the surface temperature field to am-
plify at a relatively rapid rate at the center of the wave
packet. Eventually, the thermal wind shears the PV
anomalies back down into a nearly horizontal position
downstream of the wave packet where they have a van-
ishingly small impact on the streamfunction field.

Note that the PV field is neither localized nor am-
plifying. The PV field does not satisfy the requirements
for absolute instability, but the streamfunction field it
induces does. Since one of the fields associated with
our streamfunction field is not absolutely unstable, one
could argue that our amplifying wave packet is not ‘‘tru-
ly’’ absolutely unstable. However, if a disturbance of
the type described by (15) and (17) occurred in a lab-
oratory (or atmospheric) environment, the imprecision
of measuring instruments would prevent the upstream
PV filaments from being resolved. Hence, in a labora-
tory (or atmospheric) environment, it would appear that
the seed of the absolute instability lay within the wave
packet itself; that is, it would appear that the disturbance
was truly absolutely unstable.

Another related reason why this type of instability only
classifies as an apparent absolute instability and not a true
absolute instability is that our initial disturbance is van-
ishingly small but non-zero at |x| → `. Analysis, not en-
tered into here, shows that if the initial streamfunction
field were localized and precisely equal to zero at an up-
stream of a certain location, it would remain equal to zero
upstream of this location. However, as mentioned above,
in a laboratory (or atmospheric) environment it would be
impossible to distinguish the nonlocalized disturbance de-
scribed by (15) and (16) from a disturbance of finite spatial
extent. Consequently, the growth of our disturbance at all
x values might be mistaken for the upstream movement
of initially localized energy.

Since the above is a particular solution to the gov-
erning equations, one must ask whether similarly ab-
solutely unstable structures would result from random
disturbances to the basic state.
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3. The natural selection of absolutely unstable
wave packets from random disturbances

a. Sorting wave packets by their group velocity

We begin by describing the initial-value solution for
arbitrary disturbances to our semi-infinite basic state.

Equations (6), (7), and (9) give the initial-value solution
for any disturbance that has zero surface potential tem-
perature at t 5 0. To embrace the possibility of nonzero
potential temperature at t 5 0, we simply need to add
to (7a), the zero PV initial value solution described by
Eq. (4). The resulting expression is

` `1
2i(k /m)t 2mz ikxc (x, z, t) 5 2 u (k)e 1 B(k, z9, t) dz9 e e dk. (18)u E 0 E[ ]mk52` 0

[Recall that B(k, z9, 0) 5 0.] Note that the addition of
surface potential temperature at t 5 0 does not change
the way in which interior PV evolves because there is
no interior PV gradient and the disturbances have no y
dependence. Even if the disturbances did have y de-
pendence, the interaction between the wind field attrib-
utable to surface potential temperature and interior PV
anomalies would be negligible while wave amplitudes
remained small enough for linear dynamics to dominate.
The addition of cIPV (6b) and cu (18) gives the initial
value solution for the evolution of any arbitrary stream-
function disturbance to the semi-infinite basic state that
is evanescent as z tends to infinity.

We now seek to rewrite this solution in a form that
1) places the amplifying solutions associated with PV
fields of the form given by (11) in a more general con-
text, and 2) demonstrates how it is possible, in the ab-
sence of an internal basic state PV gradient, for the
group velocity of a streamfunction field to be westward
even when the PV it is associated with is blowing east-
ward. The lack of interior PV gradients in our basic-
state flow mean that the relationships between group
velocity and eddy correlations that have been discussed
in the context of E vectors, Eliassen–Palm fluxes, and
wave activity, for example, James (1994), are not ap-
plicable to our basic state. Such relationships only apply
to PV perturbations that result from displacements of
the basic-state PV field that conserve PV. While the
perturbation PV in our basic state cannot be produced
by simply displacing the basic-state PV, it could be pro-
duced by processes such as latent heating/cooling, ra-
diative heating/cooling, and internal friction, all of
which do not conserve PV. These classes of disturbances
are not accounted for by the aforementioned relation-
ships between eddy correlations and group velocities.

To understand how a wide range of group velocities

can be achieved by the streamfunction wave packets in
our idealized basic state, recall from (6b) that the fre-
quency of the streamfunction field attributable to infi-
nitely thin PV waves at the height z9 is equal to the
speed of the wind at z9 multiplied by the wavenumber,
k, of the wave. The group velocity of the streamfunction
field attributable to two PV waves of slightly differing
wavenumbers centered at slightly different heights is
determined by the ratio of the differences in the fre-
quencies to the differences in wavenumbers. For ex-
ample if, as was the case in section 2, the difference
between the frequencies at the two heights is zero, then
the group velocity of the wave packet associated with
the streamfunction field attributable to the two PV waves
will also be zero. More generally, by letting

1
z9 5 1 h, (19)

m

where h is a scalar variable greater than 21/m, the fre-
quency of the streamfunction field attributable to the
interior PV is given by

k
v 5 kz9 5 1 kh. (20)

m

For k ± 0, the group speed along the x axis is given
by

]v
c 5 5 h. (21)g ]k

Thus, by holding h fixed and letting the wavenumber
of the PV waves vary with height according to (19),
one obtains a streamfunction wave packet with a group
velocity of h. This idea is formalized in appendix D
where we show that the initial value solution for the
part of the streamfunction field given by (6b) can be
rewritten in the form

` ` 1 g[z9(h, k), z]
2i(k /m)t ik(x2ht)c (x, z, t) 5 2 H h 1 P[z9(h, k), k]e e dk dh, (22)IPV E E 1 2m m

h52` k52`
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FIG. 3. Zonal vertical cross sections of the sum of the internal PV field streamfunction cIPV and the surface temperature streamfunction
field cu, as described in Eqs. (15) and (16), respectively. The cross sections are plotted for times (a) t 5 0, (b) t 5 (p/2)/( fL/N ) ù 15 h,
(c) t 5 p/[( f/N)L] ù 30 h, (d) t 5 (3p/2)/[( f/N)L] ù 45 h. The units of the streamfunction are normalized here by A 3 1026, where solid
and dashed lines indicate positive and negative values, respectively.

where H is the unit step function. This equation gives
cIPV in terms of an integral over group velocities of wave
packets of distinct group velocities h. Note that the
oscillation frequency of all of these modes is determined

by the e2i(k/m)t 5 e2isign(k)t term. As this term is indepen-
dent of h, all of the wave packets have the same period
of oscillation, T 5 2p (or 58.18 h, for the typical at-
mospheric parameters mentioned in section 2a).
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In appendix E, the critical dependence of this oscil-
lation period on how one chooses to group together the
continuous-spectrum streamfunction waves is illustrated
by demonstrating how the substitution z9 5 j/m groups
continuous-spectrum modes into wave packets with dif-

fering oscillation periods but equivalent group velocities
(cg 5 0 for all wave packets).

To use (22) to isolate a wave packet having the con-
stant group velocity hc, one simply sets P[z9(h, k), k]
5 G(k)d(h 2 hc) in (22), where G(k) is an arbitrary
function of k. With this choice (22) reduces to

` 1 g[z9(h , k), z]c ik(x2h t)cc (x, z, t) 5 2 H h 1 G(k)e dk . (23)IPV E c5 1 2 6[ ]m mk52`

The unit step function H in this expression dictates
that while wave packets with positive (eastward)
group velocities may contain waves with wavenum-
bers of all magnitudes, wave packets with negative
(westward) group velocities can only contain waves
whose wavenumber magnitudes are less than
L( f /N )/h c . Nevertheless, Eqs. (22) and (23) clearly
indicate that wave packets of any group velocity are
possible. Thus, eastward PV advection does not nec-
essarily imply that its corresponding streamfunction
field moves eastward—on the contrary, the field can

propagate westward. This fact does not appear to be
widely appreciated.

b. The natural selection of zero group velocity wave
packets over geophysically relevant time- and
space scales

To see how the response of the surface temperature field
depends on the group velocity of the PV wave packet that
induces the response, we 1) set u0 5 0 in (18); 2) use
(19) in (9b) to obtain an expression for B in terms of k,
h, and t; and 3) use B(k, h, t) in (18) to obtain

kht
sin1 2` ` 22(11hm)1 e P

2mz 2i(k /m)t ik[x2(h /2)t]c (x, z, t) 5 iH h 1 e e e dk dh. (24)u E E 1 2[ ]m m mh
2` 2`

2

Consequently, waves for which kht/2 is small approx-
imately satisfy the relation

sin(kht/2) 5 kht/2 (25)

and hence experience linear growth. For a given h value,
the amount of time a wave can grow linearly depends
on its wavenumber k. Thus, in considering what the
above equation can tell us about the types of distur-
bances random PV distributions are likely to excite in
earth’s atmosphere, we must first identify the range of
wavenumbers over which our solutions are relevant to
the atmosphere.

First, in order to avoid violating the assumptions of
quasi- geostrophic theory, we must exclude very high
wavenumber modes from our consideration. We choose
to make a generous estimate of the range of wave-
numbers over which quasigeostrophic theory has pre-
dictive power and exclude only those wavenumbers for
which |k| . 2 3 1025 m21 (i.e., only waves with wave-
lengths greater than 100p km are included). Assuming

a velocity scale Us of 10 m s21, this gives an upper limit
to the Rossby number of Ro 5 U/f 0L 5 1/p.

Second, since the terrestrial atmosphere includes a
tropopause at around H 5 10 km, we should also ex-
clude waves that have a significant interaction with the
tropopause. Eady (1949) showed that the addition of a
rigid lid at a height H to the basic state being considered
here leads to a dispersion relation for lower-level neutral
modes of the form

2H̃ 4 2
v 5 k 1 2 1 2 1 . (26)Eady ˜ ˜ ˜1 2[ ]!2 mH tanh(mH ) mH

(cf., e.g., Holton 1992, p. 260), where H̃ 5 NH/f 0 is
the Rossby radius of deformation and where we have
assumed the coordinate transformation given in section
2a. Note that multiplying the right-hand side of this
equation by the inverse timescale f 0L/N recovers the
exact form given in Holton. From (4), the dispersion
relation for the semi-infinite basic state is just
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FIG. 4. As in Fig. 3, but for cu, Eq. (16).

k
v 5 5 61 (depending on the sign of k). (27)

m

The fact that the frequency and phase speed relations
for waves in the semi-infinite Eady model and the reg-
ular Eady model become equivalent to more than two
significant figures for waves with m . 3.2 3 1026 (mH̃
. 3.2) suggests that the influence of the tropopause is

negligible for these waves. Thus, the geophysically rel-
evant wave solutions for the semi-infinite Eady model
are the waves whose wavenumbers lie within the range
3.2 3 1026 , k , 2 3 1025. The corresponding di-
mensional wavelength range is 100p km , l , (2p/3.2)
3 1000 km. Excluding wavenumbers outside this range
from the integral (24) isolates the geophysically relevant
part of (24). For this range of wavenumbers, it is the
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FIG. 5. As in Fig. 3, but for cIPV, Eq. (15).

PV field between the dimensional heights f 0/(2 3 1025

N) 5 0.5 km and f 0/(3.2 3 1026 N) 5 3.125 km that
is capable of causing resonant growth in surface wave
packets that have zero group velocity.

It is also important to identify relevant time scales
for our analysis. The closest atmospheric counterparts
to our baroclinic zonal flow are the elongated baroclinic
jets that often lie in storm track regions. It is not un-

common to observe large-scale jet streams remaining
in approximately the same position for about a month.
Could a natural selection process occur over such a
period? To answer this question, we shall consider the
nondimensional time period from t 5 0 to t 5 100 that
corresponds to a 38.58-day period for the parameter
values given in section 2a. Assuming that u0(k) 5 0,
the initial surface streamfunction magnitude at the
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wavenumber k would be given from (19), (6b), and (22)
by

2(11hm)1 e P
w (h, k, x, 0, 0) 5 H h 1 . (28)IPV 1 2[ ]m m

Comparing (28) with (24) shows that the growth of the
surface streamfunction field from t 5 0 to t 5 100 is
proportional to the factor sin(100kh/2)/(mh/2). Thus
wave packets that grow by more than 1 order of mag-
nitude have h magnitudes less than the magnitude of h
required to make

k hmaxsin 1001 22 23sin(10 h)
5 5 10. (29)

25m h 10 hmax

2

Solving this equation for h reveals that it is only those
wave packets with h magnitudes less than 2852.4 that
can grow by more than 1 order of magnitude over the
38.58 day period; h 5 2852.4 corresponds to a dimen-
sionally correct group velocity of only 0.085 m s21 or
285 km in 38.58 days. Evidently, the only PV wave
packets capable of making surface streamfunction grow
by an order of magnitude or more are those with a
streamfunction group velocity that is close to zero.2

Consequently, if the initial amplitude of streamfunction
wave packets were evenly distributed across h values,
absolutely unstable wave packets with approximately
zero group velocity would emerge to dominate the
streamfunction field by more than 1 order of magnitude.

Note that this naturally selected absolutely unstable
part allows for any horizontal structure representable in
terms of the geophysically relevant wavenumbers.
(Since the cutting of a Fourier integral of wave functions
at a specific wave number typically leads to a distur-
bance that is modulated by the wavenumber that it is
cut off at, one might anticipate that these structures
would be dominated by a wavelength close to the upper
range of wavelengths over which the resonance can oc-
cur, i.e., around 2000 km.) The oscillation frequency
of these selected wave packets is ( f/N)L. Also note that
the surface streamfunction amplitude of waves for
which sin(1025h) is approximately equal to 1025h dou-
ble in the first 9.26 h of development. In contrast, the
most rapidly growing Eady mode in this basic state (l
5 3927 km) takes about 24 h to double its surface
amplitude. Thus, initial growth rates associated with PV
resonance exceed those produced by the normal-mode
mechanism.

We conclude then that absolute instability via PV res-

2 This result is consistent with Chang’s (1992) analysis of the initial
‘‘near resonant’’ linear growth that results from a PV slab in the
interior.

onance can occur in geophysically relevant flows and
that it is not just a peculiarity of the particular solution
described in section 2. In contrast to flows whose nat-
urally selected structures are identifiable by their spatial
structure and scale (such as normal modes), the naturally
selected structures of the semi-infinite Eady basic state
are identifiable by their group velocity and oscillation
frequency. The horizontal scale of the selected structures
depends on the details of the initial state. In order to
illustrate that the above process is not solely confined
to Eady’s semi-infinite basic state, in appendix F we
show how Lindzen’s (1994) basic state of mean zero
PV gradient with b ± 0 also supports absolute insta-
bility.

4. Concluding remarks

The upstream expansion of a localized region of bar-
oclinic eddy activity discussed in this paper is not seeded
from within the wave packet but from PV disturbances
far upstream of the localized wave packet. However,
since these upstream PV disturbances have vanishingly
small widths and make a vanishingly small impact on
the streamfunction field, practical measurement error
would render them undetectable in an atmospheric or
laboratory environment. Practicable observations of an
absolutely unstable wave packet of the type presented
in this paper would not detect the upstream PV distur-
bances until they were in the localized streamfunction
packet itself. Thus, observations would (erroneously)
indicate that the PV disturbance appeared within the
wave packet itself, that is, that the upstream expansion
of the wave packet was seeded from within the stream-
function wave packet. In this way, our results show how
easy it would be to mistake an absolute instability seed-
ed from PV perturbations within the localized stream-
function wave packet for an instability that is seeded
by upstream PV perturbations.

In Hoskins et al. (1985), it is noted that in quasigeo-
strophic theory, streamfunction anomalies fields look
rather like smoothed PV anomalies. Superficially, one
might suppose that this implies that streamfunction
anomalies ought to move in the same direction as the
PV anomalies that induce them. Here, we have shown
that this is not the case. The movement of streamfunc-
tion anomalies depends on the group velocity of the
wave packet defining the streamfunction anomaly. By
placing infinitely thin PV waves of different wave-
lengths at different heights in the semi-infinite Eady
model, one can define wave packets with a wide range
of group velocities. This includes streamfunction wave
packets whose group velocity is westward even though
all of the PV responsible for inducing the wave packets
is being advected eastward.

Discrete numerical models would be incapable of
simulating the sustained upstream expansion and growth
captured by our analytical model as they would be in-
capable of resolving the small vertical scales of the up-
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FIG. 6. As in Fig. 3, but for the PV field evolution, Eq. (17). The units of the PV field are normalized here by A 3 10218.

stream PV perturbations. They would, however, be ca-
pable of simulating a transient period of expansion and
growth. Eventually, however, the upstream source of PV
perturbations would be depleted and localized wave
packet growth would cease. The inability of discrete

observational networks and discrete numerical models
to capture the key upstream perturbations means that
upstream perturbations of the type described in this
study could contribute to weather forecasting errors.

The growth mechanism discussed in this paper relies
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on the existence of finely layered PV structures. There
are, however, a number of reasons why such finely lay-
ered PV disturbances would not be common in the at-
mosphere. First, diffusion of heat and momentum on
the molecular scale would place a strict lower bound on
the scale of the upstream PV disturbances. Second, eddy
induced diffusion of heat and momentum would place
a larger, though less well defined, lower bound on the
scale of the upstream disturbances. Third, the mixing
effects of vigorous large-scale midlatitude eddies would
also decrease the lifetime of finely layered PV distur-
bances. Fourth, midlatitude flow is convoluted and zon-
ally periodic; hence, the infinitely long fetch distance
found in the semi-infinite Eady model does not exist in
the atmosphere. On the other hand, moist convection,
surface friction and radiative effects are constantly feed-
ing anomalously high and low values of PV into the
atmosphere. It is unlikely that the PV anomalies pro-
duced by these structures would never configure them-
selves in a way that would assist the growth of a bar-
oclinic wave packet.

Shepherd (1985) examined the growth of disturbances
to an infinite linear shear flow known as Couette flow.
Despite superficial similarities, the stability of this flow
is very different to that of the semi-infinite Eady model
because it does not support edge waves let alone the
resonant amplification of edge waves.

While the resonant interaction between interior PV
and surface temperature waves is not limited to strictly
two-dimensional disturbances (Davies and Bishop
1994), the group velocity of resonating waves with me-
ridional variations is not independent of the zonal wave-
number nor is it equal to the speed of the wind at the
ground. Thus, the wave packet behaviour discussed in
this paper is only relevant to that subset of three-di-
mensional waves for which k k l. Furthermore, it is
only relevant to situations in which one may neglect the
horizontal component of the basic-state PV gradient.
Lindzen (1994) has argued that there are many important
situations for which this is a reasonable assumption.

Note that it is a trivial matter to turn our semi-infinite
Eady model upside down and let the solid boundary
represent the tropopause. Doing so leads to a system in
which random PV perturbations amplify tropopause
based wave packets that move at the speed of the wind
at the tropopause. The observational work in Blackmon
et al. (1984a,b), Lim and Wallace (1991), Lee and Held
(1993), and Chang (1993) has demonstrated the exis-
tence of wave packets that show a resemblance to the
wave packets that would be selected by such an inverted
version of the semi-infinite Eady model. Specifically,
they find wave packets with group velocities approxi-
mately equal to the speed of the wind at the tropopause.
The semi-infinite Eady model or the Eady model itself
does not, however, readily explain why the waves in
these wave packets have wavelengths of around 3000–
4000 km. The linear Eady model would predict that such
waves would grow exponentially and have a group ve-

locity roughly equal to the speed of the midlevel wind—
not the speed of the wind at the tropopause.

Our simple model does, however, suggest a mecha-
nism for the origin of the medium-scale waves identified
in observational data by Sato et al. (1993), Hirota et al.
(1995), and Yamamouri et al. (1997). These waves typ-
ically have wavelengths of around 2000 km. Yamamouri
et al. (1997) found that these waves occur at both upper
levels and lower levels. The upper-level waves have
phase speeds faster than the phase speeds of the long-
wavelength waves. This characteristic mirrors that of
the upper-level Eady neutral modes, which have phase
speeds greater than the longer-wavelength troposphere
filling modes. We have demonstrated that random PV
perturbations will result in the growth of such waves.
Thus, our theory is consistent with these observations.
We also speculate that the lower-level medium-scale
waves identified by Yamamouri et al. (1997) might be
counterparts of the low-level Eady neutral modes which,
as we have shown here, can also be excited by random
PV perturbations.
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APPENDIX A

Algebraic Details Leading to Eq. (15)

From (6b),

2mz mz(e 1 e ) 1
for . m 2e z1

g , z 5 (A1)
2mz1 2m be 1 for , m,
e z

where b 5 (1 1 e2)/2. Using (A1) and (14) in (13)
gives

`

2a k1c (x, z, t) 5 cos(t) Ae b cos(kx) dkIPV E
1/z

`

2a k11 sin(t) Ae b sin(kx) dkE
1/z

1/z 2a k 2a k1 2(e 1 e )
1 cos(t) A cos(kx) dkE 20

1/z 2a k 2a k1 2(e 1 e )
1 sin(t) A sin(kx) dk,E 20

(A2)

where a1 5 b 1 z and a2 5 b 2 z. To perform the
integrals indicated in (A2) we use the standard integral
formulas
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2akF (a, k) 5 e sin(kx) dks E
2ake [a sin(kx) 1 x cos(kx)]

5 2 , (A3)
2 2a 1 x

2akF (a, k) 5 e cos(kx) dkc E
2ake [x sin(kx) 2 a cos(kx)]

5 , (A4)
2 2a 1 x

where a is a constant. Using (A3) and (A4) in (A2)
gives Eq. (15).

APPENDIX B

Limit Analysis of Singularities in Eq. (15)

The terms in Eq. (15)

2(a /z)2a e x x2 1 x sin 2 a cos and (B1)22 2 2 2 1 2 1 2[ ]a 1 x a 1 x z z2 2

2(a /z)2x e x x
2 a sin 1 x cos (B2)22 2 2 2 1 2 1 2[ ]a 1 x a 1 x z z2 2

are both singular at a2 5 x 5 0. The complete set of
lines that pass through this singular point may be written
in the form

z 5 bx 1 b, (B3)

where b gives the gradient of the line. By using (B3)
in (B1) and (B2) and taking the limit as x tends to zero,
we can determine the limit of (B2) and (B3) as one
approaches the singularity along any line in the x–z
plane. Along the lines described by (B3), (B1), and (B2)
take the respective forms

2[bx /(bx1b)]bx e
1

2 2x (b 1 1) x (b 1 1)

x x
3 x sin 2 bx cos and (B4)1 2 1 2[ ]bx 1 b bx 1 b

2[bx /(bx1b)]x e
1

2 2x (b 1 1) x (b 1 1)

x x
3 bx sin 1 x cos . (B5)1 2 1 2[ ]bx 1 b bx 1 b

Taking the limit of (B4) and (B5) as x tends to zero
gives

bx
1 21 2b 2bx x 1

lim 1 2 bx 5 and (B6)
2 2 2 2 1 2x (b 1 1) x (b 1 1) b bx→0

bx
1 21 2b 2x bx

lim 2 1 x 5 0. (B7)
2 2 1 2x (b 1 1) x (b 1 1) bx→0

In this way, we see that cIPV is bounded at a2 5 x 5
0. Equation (15) also contains terms that are singular at
z 5 0. Near z 5 0, all of these terms take the general
form

x x
2b /ze x sin 2 b cos . (B8)1 2 1 2[ ]z z

Since e2b/z approaches zero faster than any other poly-
nomial function of z as z approaches zero, cIPV and all
of its derivatives are continuous. Since a term very sim-
ilar to the above term appears in the PV equation (17),
one may similarly deduce that the PV and all its deriv-
atives are also continuous.

APPENDIX C

Derivation of Eq. (17)

Using (11) in (6a) gives

` ` 1
PV(x, z, t) 5 G(x, z, t; z9, k)d z9 2 dz9 dk,E E 1 2m

2` 0

(C1)

where

ik(x2z9t)G(x, z, t; z9, k) 5 F(z9)d(z9 2 z)e . (C2)

Integrating (C1) gives

PV(x, z, t)

` 1 1 k
5 F d 2 z cos(t) 2 i sin(t)E 1 2 1 2[ ]m m m

2`

3 [cos(kx) 1 i sin(kx)] dk. (C3)

Since F(1/m) is an even function of k, we may rewrite
this integral in terms of just two integrals from 0 to `.
In addition, we can change the variable of integration
from k to 1/m. Doing so leads to the formulas

PV(x, z, t)

` 1 1 1
25 2 cos(t) m F d 2 z cos(mx) dE 1 2 1 2 1 2m m m0

` 1 1 1
21 2 sin(t) m F d 2 z sin(mx) dE 1 2 1 2 1 2m m m0

F(z) x F(z) x
5 2 cos(t) cos 1 sin(t) sin .

2 21 2 1 2[ ]z z z z
(C4)

From (14),

[12(b /z)]Ae
F(z) 5 2 . (C5)

2z

Using (C5) in (C4) yields (17).
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APPENDIX D

Changing Variables from (z9, k) to (h, k)

Noting that the Jacobian of the coordinate transfor-
mation ](z9, k)/](h, k) 5 1, (6b) may be rewritten in the
form

c (x, z, t)IPV

` ` g[z9(h, k), z]
5 2 P[z9(h, k), k]E E mk52` h521/m

2i(k /m)t ik(x2ht)3 e e dh dk,

(D1)

or equivalently

c (x, z, t)IPV

` ` 1 g[z9(h, k), z]
5 2 H h 1E E 1 2m mk52` h52`

2i(k /m)t ik(x2ht)3 P[z9(h, k), k]e e dh dk,

(D2)

where H is the unit step function. Changing the order
of integration in this equation gives Eq. (22).

APPENDIX E

Partitioning into Coherent Wave Packets with
cg 5 0

The coordinate transformation

j ](z9, k) 1
z9(j, k) 5 , k(j, k) 5 k, 5 (E1)

m ](j, m) m

allows (6b) to be rewritten in the form

c (x, z, t)IPV

 
j g , z1 2` ` m j

i[kx2(kj /m)t]5 2 P , m e dk dj. E E 2 1 2m m j50 k52`

(E2)

The integral inside the large curly brackets describes a
wave packet, with zero group velocity, which oscillates
with a dimensional period, T 5 2pN/fLj. Thus Eq. (E2)
gives a representation of the IPV part as a sum of wave
packets, each of which has zero group velocity but a
different period of oscillations. Making a similar change
of variables in (7a) allows us to see how the response
of the surface temperature field depends on the time
period of the IPV wave packet that induces the response.
The amplitude of this response is entirely described by
the variable B. Using (E1) in (9b) to obtain the ex-
pression for B in terms of k, j, and t yields

 
j

2mz9iP , m e 1 2` ` m k(1 2 j) 2i[k(11j )t /2m] 2mz ikxc (x, z, t) 5 sin t e e e dm dj. (E3)u E E 2 [ ]m 2m
j50 k52` (1 2 j)

2 

In this case, equations describing the resonant am-
plification of surface modes are obtained by letting j
tend to 1 and follow a similar procedure to that given
in section 3b.

APPENDIX F

A Mean Zero PV Gradient, but with b ± 0

For a Boussinesq baroclinic quasigeostrophic basic
state on a b plane with constant stratification, the me-
ridional mean PV gradient is

]P
5 b 2 U . (F1)zz]y

Thus, in order to keep a zero mean PV gradient, we

should set U zz 5 b. This can be done, following Lindzen
(1994), by letting ]U /]z be a function of z. Assuming
that U(z 5 0) 5 0 yields a mean wind profile of the
form

bz
U(z) 5 m z 1 1 , (F2)0 1 22m0

where m0 5 (]U /]z)(z 5 0).
Since in this basic state, perturbations are governed

by (1), (2), and (3), the discrete-spectrum surface tem-
perature wave takes the same form as that given by Eqs.
(7a,b). The equation for the evolution of the interior PV
and its associated streamfunction field is obtained by
replacing Lz9 by the U field described by (F2) in Eqs.
(6a) and (6b), respectively. For the case where the initial
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surface temperature perturbation is zero, substituting
(6b) and (7a) into (3b) and solving for B yields

2ig(z9, 0)P(z9, k)
B(k, z9, t) 5

k bz9
21m 2 z9 1 11 2[ ]2 2m0

m bz9
213 sin m 2 z9 1 1 t5 1 2 6[ ]2 2m0

k bz9
213 exp 2i m 1 z9 1 1 t . (F3)5 1 2 6[ ]2 2m0

From inspection of (F3) one can see that the height
resonant growth is obtained when

2bz9
215 m 2 z9. (F4)

2m0

Since the left-hand side of this equation is positive def-
inite, resonant growth is obtained when z9 is less than
1/m, that is, less than the resonant height for the b 5
0 basic state. This could have been anticipated from
from the fact that the mean wind of the parabolic profile
is, at all heights, larger than the mean wind of the linear
profile. Consequently, the height at which the mean
wind matches the free surface temperature wave must
be lower than 1/m. Apart from this change in the height
at which PV waves must be placed in order to induce
linear growth, all of the arguments applied to the basic
state with linear shear can also be applied to the b ±
0 basic state. Thus, arbitrary disturbances to the b ± 0
basic state would also produce absolutely unstable
streamfunction wave packets.

REFERENCES

Bishop, C. H., and A. J. Thorpe, 1994: Potential vorticity and the
electrostatics analogy: Quasi-geostrophic theory. Quart. J. Roy.
Meteor. Soc., 120, 713–731.

Blackmon, M. L., 1976: A climatological spectral study of the 500
mb geopotential height of the Northern Hemisphere. J. Atmos.
Sci., 33, 1607–1623.
, Y.-H. Lee, and J. M. Wallace, 1984a: Horizontal structure of
500 mb height fluctuations with long, intermediate and short
time scales. J. Atmos. Sci., 41, 961–979.
, , , and H.-H. Hsu, 1984b: Time variation of 500 mb
height fluctuations with long, intermediate and short time scales
as deduced from lag-correlation statistics. J. Atmos. Sci., 41,
981–991.

Briggs, R. J., 1964: Electron Stream Interaction with Plasma. Re-
search Monogr., No. 29, The MIT Press, 187 pp.

Chang, E. K. M., 1992: Resonating neutral modes of the Eady model.
J. Atmos. Sci., 49, 2452–2463.
, 1993: Downstream development of baroclinic waves as inferred
from regression analysis. J. Atmos. Sci., 50, 2038–2053.

Davies, H. C., and C. H. Bishop, 1994: Eady edge waves and rapid
development. J. Atmos. Sci., 51, 1930–1946.

Eady, E. T., 1949: Long waves and cyclone waves. Tellus, 1, 33–52.
Farrell, B. F., 1984: Modal and non-modal baroclinic waves. J. Atmos.

Sci., 41, 668–673.
Gill, A. E., 1982: Atmosphere–Ocean Dynamics. Academic Press,

662 pp.
Hirota, I., K. Yamada, and K. Sato, 1995: Medium-scale travelling

waves over the North Atlantic J. Meteor. Soc. Japan, 73, 1175–
1179.

Holton, J. R., 1992: An Introduction to Dynamic Meteorology. Ac-
ademic Press, 507 pp.

Hoskins, B. J., and P. J. Valdes, 1990: On the existence of storm-
tracks. J. Atmos. Sci., 47, 1854–1864.
, M. E. McIntyre, and W. Robinson, 1985: On the use and sig-
nificance of isentropic potential vorticity maps. Quart. J. Roy.
Meteor. Soc., 111, 877–946.

James, I. N., 1994: Introduction to Circulating Atmospheres. Cam-
bridge University Press, 422 pp.

Lau, N. C., and J. M. Wallace, 1979: On the distribution of horizontal
transports by transient eddies in the Northern Hemisphere win-
tertime circulation. J. Atmos. Sci., 36, 1844–1863.

Lee, S., and I. M. Held, 1993: Baroclinic wave packets in models
and observations. J. Atmos. Sci., 50, 1413–1428.

Lim, G. H., and J. M. Wallace, 1991: Structure and evolution of
baroclinic waves as inferred from regression analysis. J. Atmos.
Sci., 48, 1718–1732.

Lindzen, R. S., 1994: The Eady problem for a basic state with zero
PV gradient but b ± 0. J. Atmos. Sci., 51, 3221–3226.

Merkine, L., 1977: Convective and absolute instability of baroclinic
eddies. Geophys. Astrophys. Fluid Dyn., 9, 129–157.

Müller, J. C., H. C. Davies, and C. Sc̈har, 1989: An unsung mechanism
for frontogenesis and cyclogenesis. J. Atmos. Sci., 46, 3664–
3672.

Parker, D. J., 1998: Secondary frontal waves in the North Atlantic
region: A dynamical perspective of current ideas. Quart. J. Roy.
Meteor. Soc., 124, 829–856.

Pedlosky, J., 1964: An initial value problem in the theory of baroclinic
instability. Tellus, 16, 12–17.

Pierrehumbert, R. T., 1984: Local and global baroclinic instability of
zonally varying flow. J. Atmos. Sci., 41, 2141–2162.

Sato, K., H. Eito, and I. Hirota, 1993: Medium-scale travelling waves
over the North Atlantic. J. Meteor. Soc. Japan, 71, 427–436.

Shepherd, T. G., 1985: Time development of small disturbances to
plane Couette flow. J. Atmos. Sci., 42, 1868–1871.

Swanson, K. L., and R. T. Pierrehumbert, 1995: Potential vorticity
homogenization and stationary waves. J. Atmos. Sci., 52, 990–
994.

Thorncroft, C. D., and B. J. Hoskins, 1990: Frontal cyclogenesis. J.
Atmos. Sci., 47, 2317–2336.

Yamamoru, M., K. Sato, and I. Hirota, 1997: A study of the seasonal
variation of upper tropospheric medium-scale waves over east
Asia based on regional climate model data. J. Meteor. Soc. Ja-
pan, 75, 13–22.


